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The biological function of noise-induced symmetry breaking (NISB) is still unclear even though it may

potentially occur in noisy intracellular systems. In this work, I demonstrate that information decoding

from a noisy signal is a potential biological function of NISB by revealing that NISB naturally emerges

from an optimal information-decoding dynamics and that several intracellular networks can be identified

with the information-decoding dynamics. I also propose a mean first passage time profile as a way to

experimentally identify NISB.
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Intracellular systems are full of a variety of dynamical
phenomena. Unlike nonbiological systems, however, most
of intracellular dynamics is considered to have its own
biological functions that contribute to the fitness of a
cell. Deterministic symmetry breaking (SB) and the asso-
ciated bistability, for example, can have biological func-
tions to realize all-or-none responses in differentiation and
polarity formation, irreversibility in apoptosis and the cell
cycle, and history-dependent memory in development and
epigenetics [1]. Thus, for a comprehensive understanding
of intracellular dynamics, it is indispensable to reveal not
only the mechanism that generates the dynamics but also
the biological function of the dynamics.

However, we still lack the knowledge on potential func-
tionalities of some intracellular dynamics in spite of their
biological relevance and importance. An example is noise-
induced symmetry breaking (NISB) in which noise induces
the emergence of a bimodal distribution even though no
deterministic SB occurs under the noiseless condition [2].
Its presence has recently been suggested more specifically
in relation to several intracellular phenomena such
as the autocatalytic cycles [3], the phosphorylation-
dephosphorylation cycle [4], an endocytic pathway of
Rab5 GTPase [5], T-cell response [6], and spontaneous
polarization in budding yeast [7]. Nonetheless, the NISB
and its related dynamics still do not attract sufficient
attention because its particular biological functions remain
unclear. Furthermore, the experimental challenge of iden-
tifying the NISB is also hampered by the lack of theoretical
criteria to distinguish between deterministic and NISBs
even though bimodal distributions have been observed
experimentally in several intracellular systems [8].

In this work, I reveal that the decoding of information
from a noisy signal can be a significant biological function
of NISB in various intracellular networks and propose an
experimental procedure to identify the NISB. Toward this
purpose, I first show that an intracellular network that can
decode (extract) relevant information from a noisy signal
naturally poses an ability to show NISB.

The following autophosphorylation and autodephos-
phorylation cycle (aPadP cycle) was clarified in Ref. [9]
as an intracellular network that is approximately equivalent
to an optimal dynamics to decode the state of environment
xt from noisy receptor signal SðtÞ [Figs. 1(a) and 1(b)]:

dZ

dt
¼ FðZ; SðtÞÞ~Z�Gð ~ZÞZþ ron ~Z� roffZ; (1)

where FðZ; SÞ :¼ �rN0SZ, Gð~ZÞ :¼ �dN0
~Z, �r ¼

logð�on=�offÞ, and �d ¼ �on � �off [Fig. 1(a)]. Z 2 ½0; 1�
and ~Z :¼ 1� Z are the ratios of phosphorylated and un-
phosphorylated molecules, respectively. FðZ; SÞ and Gð ~ZÞ
represent rate constants of the autoregulatory phosphory-
lation and dephosphorylation, respectively. ron ~Z and roffZ
are, respectively, leaky phosphorylation and dephosphor-
ylation reactions that occur spontaneously. xt 2 f0; 1g is a
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FIG. 1 (color online). Schematic diagram of the aPadP cycle
(a) and its stationary distributions driven by changing input xt (b)
and constant input x0 (d). The red and black curves are
Monte Carlo simulations of Eq. (1) and the analytic solution
of Eq. (2), respectively. The time series of the input xt (green
curves and regions), noisy signal SðtÞ (blue curves), and response
of the aPadP cycle ZðtÞ (red curves) for changing input xt (c) and
a constant input x0 (e). In all of the panels, �on ¼ 0:47,
�off ¼ 0:33, ron ¼ roff ¼ 1=2, � ¼ 0:01, and N0 ¼ 500.
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binary environmental state that randomly changes between
the on state (denoted by 1) and the off state (denoted by 0)
over time by following a time-continuous two-state
Markov process whose instantaneous rates of transition
from 0 ! 1 and 1 ! 0 are ron and roff , respectively. SðtÞ
is a noisy observation of xt by receptors of the cell and is
modeled by a counting process NPðtÞ as SðtÞ ¼ ½NPðtÞ �
NPðt� �Þ�=ð�N0Þ. In this interpretation, NPðtÞ represents
the total counts of receptor activations until t and thus

follows Pf½NPðt0Þ � NPðtÞ� ¼ ng ¼ e��ðt0;tÞ�ðt0; tÞn=ðn!Þ,
where �ðt0; tÞ :¼ R

t0
t N0�ðtÞdt and �ðtÞ¼ ½�onxtþ�offð1�

xtÞ�. Here, N0 and �ðtÞ are the total number of receptors
and the rate of activation of each receptor at t, respectively.
In addition, because � is the time required for the inacti-
vation of the receptor,NPðt� �Þ represents the total counts
of inactivations until t. Thus, NðtÞ :¼ NPðtÞ � NPðt� �Þ
corresponds to the number of active receptors at t [9] (see
also [10]).

As demonstrated in Fig. 1(b), the aPadP cycle can
decode (extract) the information of xt from extremely
noisy SðtÞ, which is a crucial function for a cell to survive
in an unpredictably changing environment with its noisy
components. Because ZðtÞ decodes xt, which switches
between 0 and 1, its stationary distribution PstðZÞ can be
bimodal [Fig. 1(c)]. However, even if the aPadP cycle is
driven not by the changing xt but by a constant x0 with
intermediate value x0 � 1=2, it still will have an ability to
break its symmetry spontaneously by generating a bimodal
stationary distribution Pc

stðZÞ [Figs. 1(d) and 1(e)].
To further clarify dynamical properties of the xt-driven

and spontaneous SBs, I derive the following Gaussian
approximation of Eq. (1) (see [10] for a derivation):

dZ ¼ ½�ðtÞZ~Zþ �on
~Z� �offZ�dtþ �Z~Z � dWt; (2)

where � :¼ �2
dN0=ð2�offÞ, rt ¼ ron þ roff , � :¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2�=rt
p

,

�ðtÞ :¼½�ðtÞ�1=2��2, �on :¼ ron=rt, and �off :¼ roff=rt.
� represents the Stratonovich integral, and the time scale of
the system is rescaled by rt. In Eq. (2), SgðtÞ :¼ �ðtÞ þ
� � dWt is the Gaussian counterpart of the noisy signal
SðtÞ in Eq. (1). The corresponding Fokker-Planck equa-
tions for �ðtÞ ¼ xt [�ðtÞ¼�2ðxt�1=2Þ] and for �ðtÞ ¼ x0
[�0 ¼ �2ðx0 � 1=2Þ] are dPðZÞ=dt ¼ �@½LðZÞPðZÞ�=
ð@ZÞ þ ð�=2Þ@2½Z~ZPðZÞ�=ð@Z2Þ and dPðZÞ=dt ¼
�@f½�0

~ZZ þ Lð ~ZÞ�PðZÞg=ð@ZÞ þ ð�=2Þ@½Z ~Z@PðZÞ=
ð@ZÞ�=ð@ZÞ, respectively (see [10]). Here, LðZÞ :¼ ð�on

~Z�
�offZÞ. Their stationary distribution can be obtained
analytically as in [10]. If �on ¼ �off ¼ 1=2 holds, as in
Fig. 1, the analytical expressions can be further simplified
as PstðZÞ ¼ C expf�½1=ðZ ~ZÞ�=�2g=ðZ~ZÞ2 and Pc

stðZÞ ¼
C0 expf�½1=ðZ ~ZÞ þ 2�0 lnð~Z=ZÞ�=�2g=Z~Z, where C
and C0 are normalization constants. The analytical expres-

sion shows that PstðZÞ becomes bimodal when �>
ffiffiffi
2

p
,

and the peak positions satisfy HðZst;�Þ :¼ 2�2Z2
st �

2�2Zst þ 1 ¼ 0 [Fig. 2(a)]. Because �2 / � and � corre-
sponds to the instantaneous information gain obtained

from SðtÞ on xt (see [10]), �>
ffiffiffi
2

p
indicates that

xt-driven SB appears only when SðtÞ contains sufficient
information on xt [9]. Therefore, xt-induced SB reflects the
efficiency of information decoding by Z. Similarly, Pc

stðZÞ
also has two peaks when j�0j is close to 0 and � is
sufficiently large. In particular, when �0 ¼ 0 (which is
equivalent to x0 ¼ 1=2), �> 2 is the condition for the
bimodality. Furthermore, the two peaks satisfy
HcðZst;�Þ :¼ �2Z2

st � �2Zst þ 1 ¼ 0 [Fig. 2(a)], which

coincides with HðZst;�Þ by scaling � as HðZst;�Þ ¼
HcðZst;

ffiffiffi
2

p
�Þ. These results indicate that the information-

decoding dynamics by the aPadP cycle accompanies spon-
taneous SB under the intermediate constant input x0 ¼
1=2, and that its information-decoding function can be
inferred from the related spontaneous SB (see [10]
for �on � �off).
At first sight, the spontaneous SB ofPc

stðZÞ appears to be
deterministic because the positive regulations of the auto-
phosphorylation and autodephosphorylation seem to create
a deterministically bistable potential [Fig. 1(a)]. However,
Eq. (2) shows that it only has a single stationary state
deterministically for all constant �0 because its determi-
nistic potential VðZ;�Þ :¼ Z½�Z2=3þ ð1��ÞZ=2�
�on� þ C00ð�Þ has only one minimum within 0 � Z � 1.
Thus, the deterministic potential alone never generates the
spontaneous SB. Rather, it is induced by noise. Because
the signal SgðtÞ that contains both the input �ðtÞ and the

noise dWt is multiplied by Z ~Z, the system has a slow time
scale near Z ¼ 1 or Z ¼ 0, whereas it has a fast time scale
near Z ¼ 1=2. This nonhomogeneity of the time scale,
especially for the noise, creates the bimodality because
the system tends to spend more time near Z ¼ 1 and Z ¼
0. In this mechanism, stronger noise can induce sponta-
neous SB [Fig. 2(b)], in sharp contrast to deterministic
spontaneous SB, where noise just blurs the deterministic
bistable structure [Fig. S2(a) in [10]]. This NISB has been
known mathematically as a pure noise-induced transition
[2] and is equivalent to the noise-induced phenomena
reported previously for various intracellular systems
[3–7,11]. However, its biological function has been unclear
both theoretically and experimentally. This result reveals
that NISB under constant input x0 and the information-
decoding function under changing input xt are tightly
connected to each other. This connection in turn strongly
suggests that an intracellular network that can show NISB
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FIG. 2 (color). (a) Peak positions of PstðZÞ (blue curve) and
Pc

stðZÞ (red curve) as functions of �, where � ¼ 0 and �on ¼
�off ¼ 1=2. (b) The stationary distributions of Eq. (2) for differ-
ent values of �, where � ¼ 0 and �on ¼ �off ¼ 1=2.
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may have a hidden function to decode information even
though its network structure is seemingly different from
that of the aPadP cycle. Next, I demonstrate the equiva-
lence of the aPadP cycle with a modified version of a T-cell
response model reported to have noise-induced SB [6].

T-cell response is modeled by a simplified dueling re-
action between agonistic and antagonistic signals SPðtÞ and
SNðtÞ, respectively [Fig. 3(a)]. The receptors not induced,
induced by SPðtÞ, and induced by SNðtÞ are designated here
as A, AP, and AN , respectively. While positive feedback
regulation is assumed only for the inductions by the agonist
in [6], I include both positive regulative and nonregulative
terms for both inductions for generality as

dA

dt
¼ vA � ½SPðtÞAP þ SNðtÞAN�A� ðkP þ kNÞA;

dAo

dt
¼ SoðtÞAoAþ koA� dAo; o 2 fP;Ng:

(3)

Let APN :¼ AP þ AN , Z :¼ AP=APN , and ~Z :¼ AN=APN.
If jSPðtÞ � SNðtÞj � SPðtÞ; SNðtÞ, then we can derive
dZ=dt ¼ A½SPðtÞ � SNðtÞ�Z~Zþ a½kP ~Z� kNZ�, where
a ¼ A=APN is approximately constant (see [10] for the
details). If we identify ASPðtÞ, ASNðtÞ, akP, and akN with
N0�rSðtÞ, N0�d, ron, and roff in Eq. (1), respectively, then
this equation is equivalent to Eq. (1), indicating that the
dueling reaction of the T-cell response has the potential to
detect (decode) a small change in SPðtÞ due to the agonist
even with erroneous signals in SPðtÞ and SNðtÞ. Similar
results can also be obtained for a polarity formation
[Fig. S2(b) in [10]], a zero-order phosphorylation-
dephosphorylation cycle, and population dynamics
(see [10]), although not all NISBs are equivalent to the
decoding dynamics. This suggests that the connection of
NISB and its information-decoding function may be also
found in various other networks.

To further test the validity of this connection, the experi-
mental identification of the NISB will be crucial. While the

emergence of bimodal distributions has been observed
experimentally in several cellular phenomena [8], a bimo-
dal distribution alone is not sufficient to distinguish the
NISB from the deterministic SB. For example, a stationary
distribution that is exactly the same as Pc

stðPÞ can also be
realized by a double-well potential VefðZÞ, with additive

noise as

dZ ¼ �v
dVefðZÞ

dZ
dtþ ffiffiffi

v
p

� � dWt; (4)

where VefðZÞ ¼ ½ð�on � �dZÞ=ðZ ~ZÞ þ ð�þ �dÞ lnð~Z=ZÞ�
�ð�2=2Þ lnZ ~Z. v is a time constant that cannot be deter-
mined solely from Pc

stðZÞ. While the response of the dis-
tribution to the change in noise intensity may discriminate
between the two SBs [Fig. 2(b) and Fig. S2(a) in [10]], it is
still difficult to experimentally change just the noise inten-
sity because the deterministic dynamics and noise usually
share some parameters in intracellular networks.
Experimentally feasible is a way to exploit the dynamic
information of a system without external perturbations and
mutations such as the trajectories under constant input.
While the trajectories generated by two SBs seem to
have little difference (Fig. S3 in [10]), they are qualita-
tively distinguished by their mean first passage time
(mFPT) profiles TðZ;ZLÞ, defined as the average time,
starting from the left peak ZL to reach Z for the first
time, where ZL � Z � ZR. Figure 3(b) shows that the
shape of the mFPT profile for the deterministic bimodal
distribution, TefðZ;ZLÞ, is sigmoidal, whereas that of the

noise-induced one, TniðZ;ZLÞ, is antisigmoidal.
This qualitative difference is owing to the difference

between their mechanisms to generate SB. The sigmoidal
shape appears in the deterministic case because it takes the
longest time to cross the potential barrier between two
wells. In the noise-induced case, by contrast, its state re-
sides near the two peaks but quickly goes through the
bottom of the stationary distribution because of the non-
homogeneity in the time scale, which results in the anti-
sigmoidal shape of the mFPT profile. Because single-cell
time-lapse measurement is now a popular imaging tech-
nique and the qualitative difference in the shape of profiles
is a robust measure to distinguish underlying mechanisms
[12], the mFPT profile can serve as a criterion for experi-
mentally identifying NISB and its associated function to
decode information (see also [10]).
As the mFPT profile clarified, the state-dependent non-

homogeneous time scale is essential not only to the gen-
eration but also to the dynamical properties of NISB. Its
role can be illustrated more clearly by changing the
variable of Eq. (2) from Z to � ¼ logZ=ð1� ZÞ as
d� ¼ ½�ðtÞdt þ � � dWt� � ð1 þ e�Þð�off � �one

��Þdt.
This coordinate transformation converts the equation for
Z with the multiplicative noise into an equation for � with
an additive noise, meaning that the nonhomogeneous time
scale is resolved in the � coordinate. The deterministic po-
tential for the dynamics of � is Vð�; �Þ :¼ ���þ Vfð�Þ,
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FIG. 3 (color). (a) Schematic diagram of the T-cell response
model. (b) The mFPT of Eq. (2), Tni (red curve), and Eq. (4), Tef

(blue curve). The solid and dashed curves are obtained by
Monte Carlo simulations with 1000 samples and numerical
integration of the analytical representation of the mFPT, respec-
tively. All the parameters other than v are the same as those in
Fig. 1(e). v is determined so that the mFPT of Eq. (3) coincides
with that of Eq. (2) at right peak ZR.
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where Vfð�Þ :¼ ���d þ �offe
� þ �one

�� and has only

one minimum for constant �ðtÞ ¼ �0 at �st ¼ logf½�0 þ
�d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�0 þ �dÞ2 þ 4�off�on

p �=ð2�offÞg. Thus, the corre-
sponding Pstð�Þ also has only one maximum for constant
�0 because minima of a potential and maxima of its sta-
tionary distribution generally coincide when noise is addi-
tive (Fig. S4 in [10]). Since an invertible coordinate
transformation never changes the number of deterministic
stationary states, this result clearly indicates that the non-
linear transformation Z ¼ e�=ð1þ e�Þ from � to Z is
fundamental to the generation of NISB.

From the information-theoretical viewpoint, this result
also shows that the dynamics of Eq. (1) to decode infor-
mation on xt as ZðtÞ from SðtÞ is reduced to a random walk
in potential Vfð�Þ with bias �ðtÞ. The temporal integration

by the random walk in the � coordinate additively ampli-
fies the information on xt represented by �t, whereas it
suppresses the noise represented by dWt, leading to the
efficient decoding of xt from SgðtÞ. Moreover, the potential

Vfð�Þ endows the dynamics with the forgetting property

that enables fast tracking of changing xt. These facts reveal
that the � coordinate is more essential than the Z coordi-
nate for the information-decoding function of Eq. (2) in the
sense that its underlying principle is described the most
simply. This dynamics is represented as Eq. (2) in the Z
coordinate where Z is more directly related with xt as its
posterior probability. Thus, the connection between the
decoding function and NISB can be understood as a dual-
istic relation between the natural expression of the decod-
ing function in the � coordinate and the emergence of
NISB in the Z coordinate. This relation may be employed
to further clarify the essence of the connection between
NISB and information decoding.

The decoding dynamics in the � coordinate as a random
walk also indicates the disadvantage of NISB such that it
cannot memorize or reinforce the state of the system
without input as deterministic SB can. In this sense, the
functions of deterministic and NISBs are mutually com-
plementary, and a transition from NISB to deterministic SB
may be important to constitute an entire cellular decision-
making process, in which a decision is made based on a
noisy signal and the determined decision is subsequently
fixed. This observation suggests that an integrated theory
for both SBs will be crucial to understand various cellular
information processes with noise.

Finally, the connection between NISB and the
information-decoding function revealed in this work may
also lead to the elucidation of the energy cost of cellular
information processing because NISB is related to the
extent of the nonequilibrium state, which requires the
flow of free energy [13]. As recently demonstrated,
information can be converted into free energy and vice
versa [14], but the amount of energy required for informa-
tion processing is still unclear. Because the energy cost is

the common currency for coordinating the intracellular
functions in a cell, the result of this study together with
other recent advancements may lead to a more compre-
hensive understanding of the total optimality of cellular
functions.
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