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We consider the time evolution of observables in the transverse-field Ising chain after a sudden quench

of the magnetic field. We provide exact analytical results for the asymptotic time and distance dependence

of one- and two-point correlation functions of the order parameter. We employ two complementary

approaches based on asymptotic evaluations of determinants and form-factor sums. We prove that the

stationary value of the two-point correlation function is not thermal, but can be described by a generalized

Gibbs ensemble (GGE). The approach to the stationary state can also be understood in terms of a GGE.

We present a conjecture on how these results generalize to particular quenches in other integrable models.
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Recent experiments on trapped cold atomic gases [1,2]
have raised intriguing fundamental questions regarding the
nonequilibrium dynamics of correlated many-body quan-
tum systems. These cold atom systems are sufficiently
weakly coupled to their environments as to allow the
observation of essentially unitary nonequilibrium time
evolution on long time scales. The quantum Newton’s
cradle experiments of Kinoshita et al. [2] in particular
have focused attention on the roles played by dimension-
ality and conservation laws. The observed absence of
‘‘thermalization’’ in quasi-one-dimensional condensates
was attributed to the experimental system being approxi-
mately describable by a quantum integrable many-body
theory. This in turn initiated vigorous research on clarify-
ing the role played by quantum integrability in determining
the stationary (late time) behavior of nonequilibrium evo-
lution in correlated quantum systems [3–9]. The simplest
way of driving a quantum system out of equilibrium is by
means of a quantum quench: a system is prepared in the
ground state of a given Hamiltonian Hðh0Þ, where h0 is an
experimentally tunable parameter such as a bulk magnetic
field. At time t ¼ 0 the parameter h0 is changed suddenly
to a different value h and one then considers the unitary
time evolution of the system by means of the new
Hamiltonian HðhÞ. Central issues that have been investi-
gated are whether the system relaxes to a stationary state,
and if it does, how to characterize its physical properties
at late times. It is widely believed (see, e.g., [10] for a
comprehensive summary) that the behavior of local ob-
servables (such as one and two-point correlation functions)
can be described in terms of either an effective thermal
(Gibbs) distribution or a generalized Gibbs ensemble
(GGE) [3]. It has been argued that the latter arises for
integrable models, while the former obtains for generic
systems [3–6]. However, several recent studies [7–9] sug-
gest that the behavior is more complicated and, in particu-
lar, depends on the initial state. Moreover, open questions
remain even with regards to the very existence of stationary

states. For example, the order parameters of certain mean-
field models have recently been shown to display persistent
oscillations [11]. Two recent works have raised another
crucial issue in the debate on thermalization, namely, the
role played by the considered observables [8,12]. More
precisely, it was pointed out that the locality of the observ-
able with respect to the elementary excitations is expected
to affect the late time behavior of an observable after a
quantum quench. In light of the available experimental and
theoretical results further clarification of the role of inte-
grability on the time evolution after a quantum quench
calls for exact analytical results on ‘‘generic’’ correlation
functions, i.e., those corresponding to observables nonlocal
with respect to the elementary excitations. In the following
we present such results for the particular case of the
transverse-field Ising chain, which is a crucial paradigm
for quantum critical behavior. While the model admits a
representation in terms of free fermions, the order parame-
ter is nonlocal with respect to the fermionic degrees of
freedom, which renders it an ideal testing ground for
thermalization ideas. Although the model has been widely
analyzed in the context of quantum quenches [13–17], the
nonequilbrium evolution of order parameter correlation
functions is still not known analytically. In this Letter we
present analytical results for the full asymptotic time and
distance dependence of one- and two-point correlation
functions of the order parameter in the thermodynamic
limit after a quantum quench within the ferromagnetic
phase. We also present partial results for quenches within
the paramagnetic phase and across the critical point. Our
results are obtained by two independent, novel methods.
The first is based on the determinant representation of
correlation functions characteristic of free-fermionic theo-
ries. The second is based on the form-factor approach [18]
and is applicable more generally to integrable quenches in
interacting quantum field theories [19]. This method com-
plements existing analytical or seminumerical methods
used for studying quantum quenches in integrable systems
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[6,20], but has the advantage of providing analytic answers
directly in the thermodynamic limit.

The model.—We consider the spin- 12 transverse-field

Ising chain (TFIC) Hamiltonian

HðhÞ ¼ � 1

2

X1

l¼�1
½�x

l �
x
lþ1 þ h�z

l �; (1)

which at zero temperature exhibits ferromagnetic (h < 1)
and paramagnetic (h > 1) phases, separated by a quantum
critical point. HðhÞ can be diagonalized by a combination
of Jordan-Wigner and Bogoliubov transformations (see,
e.g., [13]). The dispersion of the elementary fermion ex-

citations is �hðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � 2h coskþ 1

p
. The system is

initially prepared in the ground state at a field h0. The field
is then instantaneously changed from h0 to h and unitary
time evolution with Hamiltonian HðhÞ ensues. We are
interested in the time evolution of the order parameter
�xðtÞ � h�x

l ðtÞi and its two-point function �xxð‘; tÞ �
h�x

l ðtÞ�x
lþ‘ðtÞi. Because of translational invariance the

one-point function is position independent and the two-
point function depends only on the distance ‘. An impor-
tant role is played by the difference �k of the Bogoliubov
angles diagonalizing HðhÞ and Hðh0Þ, respectively,

0< cos�k ¼ hh0 � ðhþ h0Þ coskþ 1

�hðkÞ�h0ðkÞ
� 1: (2)

Quenches within the ordered phase (h, h0 � 1).—We find
that at late times the order parameter relaxes to zero
exponentially fast

�xðtÞ / exp

�
t
Z �

0

dk

�
�0hðkÞ lnðcos�kÞ

�
; (3)

where �0hðkÞ ¼ d�hðkÞ=dk. The two-point function of the

order parameter exhibits exponential decay both in time
and distance (�ðxÞ denotes the Heaviside function)

�xxð‘; tÞ / exp

�
‘
Z �

0

dk

�
lnðcos�kÞ�ð2�0hðkÞt� ‘Þ

�

� exp

�
2t
Z �

0

dk

�
�0hðkÞ lnðcos�kÞ�ð‘� 2�0hðkÞtÞ

�
:

(4)

In the ‘ ! 1 limit the first factor is equal to unity and
�xxð1; tÞ ¼ ð�xðtÞÞ2, confirming cluster decomposition in
our nonequilibrium situation. Figure 1 shows a comparison
of our asymptotic result for �xxð‘; tÞ to numerical data,
establishing the accuracy of the former even for relatively
short separations and times. We note that (4) holds even for
quenches to or from the quantum critical point and agrees
with the general form put forward in [4] on the basis of
semiclassical arguments.

The stationary state.—The result (4) allows us to make
exact statements regarding thermalization in the model.
The one-point function is trivially thermal, since it
vanishes for t ! 1 as was already pointed out in [4,17].

On the other hand, in this limit the two-point function
exhibits exponential decay with a correlation length

��1 ¼
Z �

��

dk

2�
��1ðkÞ ¼ �

Z �

��

dk

2�
lnj cos�kj: (5)

This is reminiscent of the behavior of the equilibrium
two-point function �xx

eqð‘Þ at temperature T, which decays

exponentially with correlation length (for h < 1)[13]

��1
T ¼ �

Z �

��

dk

2�
ln

��������tanh
�hðkÞ
2T

��������: (6)

For �xxð‘;1Þ to be thermal, � would have to equal �Teff
,

where the effective temperature Teff is determined by the
requirement that the (average) energy in the initial state
hc 0jHðhÞjc 0i is given by the thermal average hHðhÞiTeff

.

This leads to the following equation fixing Teff

Z �

��

dk

2�
�hðkÞ cos�k ¼

Z �

��

dk

2�
�hðkÞ tanh�hðkÞ2Teff

: (7)

With Teff given by (7) we find that ��1
Teff

� ��1 and

�xxð‘;1Þ is therefore never thermal. On the other hand,
for small quenches corresponding to small values of Teff , �
and �Teff

can be seen to coincide to order ðh� h0Þ2 [21].

Hence there exists a small quench regime, where the
thermal result provides a good approximation. This agrees
with the numerical findings of Ref. [17], which were
reported to be consistent with thermal behavior at low
effective temperatures. In [3] it was proposed that the
stationary state of integrable models can be described in
terms of a GGE, defined by maximizing the entropy while
keeping the energy as well as higher conservation laws
fixed. For the particular case of the TFIC this results in a
mode-dependent effective temperature given by

cos�k ¼ tanh
�hðkÞ
2TeffðkÞ : (8)

Inserting this relation into the expression (6) for �T in
Eq. (6) results in � (5), which proves that the stationary

FIG. 1 (color online). �xxð‘; tÞ for the quench h0 ¼ 0:3 ! h ¼
0:5 at fixed distance ‘ ¼ 20 and ‘ ¼ 40 against the prediction
in (4). The overall amplitude of �xx has been used as the same fit
parameter in both cases.
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behavior after a quench is indeed described by a GGE. To
the best of our knowledge this demonstrates for the first
time that the GGE applies even to correlation functions of
observables that are nonlocal with respect to the elemen-
tary excitations in a lattice model, thus significantly gen-
eralizing the results of [3–5]. Our expression (5) for the
correlation length in terms of TeffðkÞ (8) explains nicely
observations made in [17], that numerical results on �xx are
described more accurately by a mode-dependent correla-
tion length than by the thermal result (6). In [6] it was
argued that the GGE quite generally describes the station-
ary behavior of one-point functions for quenches in inte-
grable quantum field theories. Taking the appropriate
scaling limit of our result suggests the correctness of the
assumptions made in [6].

Approach to the stationary state.—Suprisingly the decay
time in (3) can be similarly explained in terms of a GGE,
even though it is not a property of the stationary state. The
one-point function (3) is characterized by exponential
decay with rate ��1 ¼ �R

�
0

dk
� �0hðkÞ lnðcos�kÞ. This can

be interpreted as the average mode-dependent decay time
��1ðkÞ ¼ �0hðkÞ��1ðkÞ, obtained by multiplying the mode-

dependent inverse correlation length by the velocity. The
relaxational behavior of the two-point function can be
understood following [4] by rewriting (4) as

�xxð‘; tÞ
ð�xðtÞÞ2 � exp

�Z �

0

dk

�

�
‘

�ðkÞ �
2t

�ðkÞ
�
�ð2�0hðkÞt� ‘Þ

�
:

(9)

The theta function expresses the fact that a given mode can
only contribute to the relaxational behavior if the distance
‘ lies within its forward ‘‘light cone,’’ while the form of the
remaining factor follows from the known stationary behav-
ior. Numerical studies of the characteristic coherence time
for the nonequal-time two-point function were found to be
compatible with thermal behavior [17]. It would be inter-
esting to revisit this analysis in light of our current findings.

Quenches originating or ending in the disordered
phase.—Here the behavior of correlation functions of �x

is more involved [17]. A complete summary of our results
on the dynamics in this case is beyond the scope of this
Letter and will be reported elsewhere [19]. On the other
hand, the correlation length characterizing the stationary
behavior of �xxð‘; t ¼ 1Þ � expð�‘=�Þ for an arbitrary
quench can be cast in the simple form

��1¼�ðh�1Þ�ðh0�1Þlnðmin½h0;h1�Þ
� ln½xþþx�þ�½ðh�1Þðh0�1Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4xþx�
p �; (10)

where x� ¼ 1
4 ½minðh; h�1Þ � 1�½minðh0; h�1

0 Þ � 1� and

h1 ¼ 1þhh0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2�1Þðh2

0
�1Þ

p
hþh0

. This agrees with (4) and the

known results for h0 ¼ 0 and h0 ¼ 1 [15]. Crucially, it
can be proved by a direct calculation in the framework of
the Toeplitz determinant approach summarized below that
the result (10) agrees with the predictions of a GGE. We

believe this calculation generalizes straightforwardly to
nonlocal correlators in other free-fermionic theories, which
suggests that the GGE correctly predicts infinite time
behavior for both local and nonlocal observables in such
theories.
Method I: Determinant approach.—We focus on the

two-point function �xxð‘; tÞ, which can be written as the
determinant of a 2‘� 2‘ block Toeplitz matrix T
[13,17,19]. The matrix elements of T depend explicitly
on the time t. In the stationary state the t dependence
disappears [15] and the large-‘ behavior can be obtained
by application of the generalized Szego lemma [19], re-
sulting in (10). The dynamics in the limit t, ‘ ! 1 at fixed
ratio t=‘ is much more difficult to determine, as the ele-
ments of T then depend on the matrix dimension itself and
Szego’s lemma does not apply. To deal with this situation
we employ a method similar to [16]. In order to calculate
ln detjTj ¼ Tr lnjTj, we consider the moments of T,
i.e., TrT2n (we find that odd moments are subleading).
Calculating these moments gives

TrT2n ¼ ‘
Z �

��

dk

2�
ðcos�kÞ2n

þ
Z �

��

dk

2�
"ð‘� 2j�0hðkÞjtÞ½1�ðcos�kÞ2n�; (11)

where "ðxÞ ¼ x�ðxÞ. The trace of any analytic function f
of T can be formally expanded in the moments. In our case
we are interested in fðxÞ ¼ lnjxj, which is analytic in the
principal strip for any x � 0. As the symbol of the block
Toeplitz matrix has winding number zero about the origin
and cosð�kÞ is always nonzero we can resum the expansion
of the logarithm to obtain (4). We have generalized these
results to the case of the XY spin chain in a field [19].
Method II: Form-factor approach.—This approach ap-

plies more generally to quenches in integrable (interacting)
quantum field theories. We focus on the one-point function
in the ordered phase. The ground state for jhj< 1 sponta-
neously breaks the Z2 symmetry of the TFIC, resulting in
an initial (ground) state of the form

j�i ¼ 1ffiffiffi
2

p ½jBiR þ jBiNS�; (12)

where R andNS refer to the periodic or antiperiodic sectors

of the free-fermion theory, respectively, and e.g., jBiR ¼
expðiP0<p2RKðpÞbypby�pÞj0iR, where KðpÞ ¼ tan½�p=2�
and byp is a fermion creation operator with momentum p.
The one-point function is

h�j�x
mðtÞj�i

h�j�i ¼ 2 NShBj�x
mðtÞjBiR

NShBjBiNS þ RhBjBiR
: (13)

Expanding the ‘‘boundary states’’ jBiR;NS results in a

Lehmann representation for (13). Crucially, the matrix
elements (form factors) of �x

mðtÞ between multifermion
Hamiltonian eigenstates are known exactly for the TFIC
[22]. The main idea for evaluating the Lehmann represen-
tation is similar to the finite temperature case [23,24]. For a
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small quench the (total) density n0 of fermion excitations in
the initial state constitutes a small parameter. In this case
one can use the KðkÞ matrix as an expansion parameter.
One then observes that the form factors appearing in the
Lehmann representation are singular when momenta in the
in and out states coincide. The leading (in the density n0)
contribution to the one-point function is obtained by sum-
ming all terms with the strongest singularities at a given
order in the expansion in powers of K. This amounts to the
exponentiation of infrared singularities. We note that just as
in the finite temperature case [24] infinite volume divergen-
ces encountered in evaluating the numerator of (13) cancel
against analogous divergencies in the denominator. The
result of these calculations is

h�j�x
mðtÞj�i

h�j�i / exp

�
�t

Z �

0

dk

�
K2ðkÞ2�0ðkÞ

�
: (14)

The decay rate agrees with the leading term in the expansion
of (3) in powers of K2ðkÞ. The correction to the K2ðkÞ factor
in (14) are found to be OðK6Þ, again in agreement with (3).
We note that (14) provides an excellent approximation to (3)
as long as h, h0 are not too close to the critical point. The
two-point function can be analyzed in an analogous manner
[19] and the results again agree with the appropriate expan-
sion of (4).

Summary and discussion.—We have obtained exact ana-
lytic results for the long distance and time asymptotic
behavior of one- and two-point functions of the order
parameter �x in the TFIC after a quantum quench. We
have shown that the stationary expectation value of the
two-point function is not thermal, but can be described by
a GGE. We have further shown that the approach to the
stationary state for quenches within the ordered phase can
be understood in terms of a GGE as well. Our work further
demonstrates the importance of having analytic results at
one’s disposal when trying to draw conclusions regarding
the statistical description of stationary state properties.
Finally, we comment that our newly developed method
based on form factors generalizes directly to integrable
quenches in integrable quantum field theories. These are
characterized by the requirement that the initial state is
compatible with factorizable scattering. We conjecture
that the stationary behavior of both local and nonlocal
observables for integrable quenches in theories with purely
diagonal scattering, e.g., the sine-Gordon model at a re-
flectionless point, can be described by an appropriate GGE.
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