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A pair of perturbed antiparallel quantum vortices, simulated using the three-dimensional Gross-

Pitaevskii equations, is shown to be unstable to vortex stretching. This results in kinetic energy Krc

being converted into interaction energy EI and eventually local kinetic energy depletion that is similar to

energy decay in a classical fluid, even though the governing equations are Hamiltonian and energy

conserving. The intermediate stages include the generation of vortex waves, their deepening, multiple

reconnections, the emission of vortex rings and phonons, and the creation of an approximately �5=3

kinetic energy spectrum at high wave numbers. All of the wave generation and reconnection steps follow

from interactions between the two original vortices. A four vortex example is given to demonstrate that

some of these steps might be general.
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Background.—Despite the absence of viscosity, experi-
ments have repeatedly shown that superfluids exhibit
resistance and depletion of turbulent kinetic energy in a
manner similar to the effects of turbulence in a classical
fluid [1] with ideal boundary conditions. The superfluid
experiments measure the decay of vortex line length, with
the first measurements at relatively high temperatures [2]
and recent confirmation at lower temperatures. These
experiments include 3He for T < 0:2Tc [3], where
Tc � 2:2 mK, and more recent measurements in 4He at
T � 0:5 K [4]. These results imply that the effect could be
a property of the ideal, inviscid equations for a pure
superfluid or quantum gas, so that coupling to the viscous
normal fluid component is not required to get decay.

Why would an inviscid, Hamiltonian system decay in a
manner similar to a classical fluid? To compare directly a
theory for classical decay based upon the Navier-Stokes
equations would be needed, which does not exist. Could
large simulations provide the clues? As in the classical case
[5,6], a large simulation of a quantum vortex tangle [7]
reproduces many experimental properties, including�5=3
spectra [8,9]. However, gaining insight has many of the
same problems as using observations.

To bridge the gap, this Letter presents initial analysis of
the evolution of a single pair of antiparallel quantum
vortices that, through a series of identifiable steps, is trans-
formed into a state with most of the observed properties of
quantum turbulence. After setting up the problem, analysis
shows that after initially stretching, the vortex line length

decays along with the local energy. Eventually a k�5=3

kinetic energy spectrum forms and distributions of the
interaction energy suggest that phonon generation could
act as an energy sink. Finally, there are a few results for an
initial condition that could be compared to experiments
measuring vortex line properties [4,10,11].

Equations and numerics.—The quantum vortices are
simulated using the 3D Gross-Pitaevskii equations
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c ¼ 0:5r2c þ 0:5c ð1� jc j2Þ; (1)

with background density �b ¼ 1. Through the Madelung
transformation: c ¼ ffiffiffiffi

�
p

expði�Þ, a velocity is identified

as v ¼ r� and the density is � ¼ jc j2. Defects in the
wave function c are interpreted as infinitesimally thin
vortices of constant circulation

H
v � ds ¼ 2� The equa-

tions conserve the mass M ¼ R
dVjc j2 and the

Hamiltonian

H ¼ Krc þ EI ðkineticþ interactionÞ (2)

where Krc ¼ 1
2

R
dVrc � rc y, EI¼ 1

4

R
dVð1�jc j2Þ2,

with c y being the complex conjugate of c .
Simulations of the Gross-Pitaevskii equations require

good numerics, adequate resolution, and smooth boundary
conditions. Convergent time advancement is obtained
using a 3rd-order Runge-Kutta, semi-implicit spectral
algorithm used for other ideal equations [12] where the
nonlinear terms are calculated in physical space, then
transformed to Fourier space to calculate the linear terms
using complex integrating factors. No-flux domain walls
are imposed using cosine transforms and serve as an ap-
proximation to those of a superfluid in a container and as a
means of generating symmetric initial conditions. The
constant time step is small enough to obtain convergence
consistent with the algorithm.
Initial conditions.—The initial condition for the full

periodic domain is shown in Fig. 1(a). The wave function
is formed out by superposing vortex cores around
the trajectories of lines of � � 0, then multiplying by
complex exponentials, which define the sign of the circu-
lation. In the first case, only one-half of one of the anti-
parallel pair needs to be given. Its other half and its
antiparallel image are automatically behind the no-flux
boundaries in y and z. The trajectory chosen for this vortex
line is sðx; y; zÞ ¼ ð�x½2= coshð½y=�y�1:8Þ � 1�; 1; 0Þ with
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�x ¼ �1:6 and �y ¼ 1:25 in a Lx � Ly � Lz ¼
8�� 16�� 4� domain on a 128� 512� 64 mesh. The
power 1.8 on the normalized position y=�y helps to local-

ize the perturbation near the y ¼ 0 symmetry plane. Long
vortices were used to minimize reflections off the y ¼ 16�
symmetry plane during the late stages.

To ensure that the initial density went smoothly from
zero on the vortex cores to roughly the background density

over the distance of the healing length, jc j ¼ ffiffiffiffi
�

p ¼
rp=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p þ a0

p
with p ¼ 2 and a0 ¼ 2 was chosen. Once

the calculation started, the density about the cores profile
quickly relaxed to the p ¼ 1 theoretical prediction [13].
A new calculation by Rorai starting with p ¼ 1 shows
cleaner conclusions without changing the overall conclu-
sions about the energetics reported here. This function was
applied approximately perpendicular to the trajectory of
the vortex lines, and is not perpendicular to the y axis as in
past Euler calculations [12], which assisted in minimizing
spots of excess � > �b.

In order to ensure that c at the boundaries is sufficiently
smooth, up to 23 image vortices from outside the domain
were mapped into the computational domain, as opposed to
the three image vortices used in earlier work [14]. The final
step for obtaining a smooth initial condition uses a
expð��k4Þ Fourier filter with � ¼ 0:002.

Evolution: stretching, reconnection, waves, rings.—To
give an overall sense of the evolution, four frames are
shown: the initial time and three subsequent stages.
Figure 1(b) shows the stretched state just as the first
reconnection commences. Vortex stretching modifies the
density around the original vortex in several ways. First
it deforms the vortex, making it thinner in the x direc-
tion. However, because Gross-Pitaevskii does not have
singularities, stretching must also remove mass from the
interaction region so that the core diameters defined by
� � �c � 0 can never become infinitely thin. This is dis-
tinctly different from the classical Euler equations where
singularities are a possibility and cores could become
infinitely thin. Figure 1(b) shows the time when this

decrease in density has created a density hole between
the two vortices and reconnection has begun. As noted
before [14], from a Lagrangian perspective, the topologic
change associated with reconnection without singularities
in the wave function can only occur across locations of
zero density. Note the large wave (or kink) at the boundary
between the most stretched region and the small vortex
waves propagating further out on the vortices.
After reconnection, waves move out from this kink and

deepen. These waves are driven by interactions between
the vortices, not local induction terms associated with
vortex Kelvin waves. The deepening leads to two new
reconnections near jyj ¼ 5 at t ¼ 4:5, which creates the
first vortex rings. Then a series of zigzags and dips appear
on the z ¼ 0 plane. Each of these dips leads to a new
reconnection and the creation of yet another vortex ring.
Ongoing spectral analysis suggests that for every ring
created, there is another spectral cascade step.
The rings then propagate away from the y ¼ 0 plane.

Figure 2(b) shows a late stage with only a few remaining
vortex rings. Note that each successive ring for increasing y
has a smaller radius than the previous ring. Because the
quantum circulation � of each vortex ring is identical, this
implies that the propagation velocities V � �=R and the
separation between the rings increases in time and they can
freely leave the local system without interfering with one
another. The calculation was terminated once the rings
began to hit the outer wall.
Stretching diagnostics.—The first attempt to investigate

vortex stretching in the Gross-Pitaevski equations used a
spectral length similar to the Taylor microscale � [15]. For
the cases here, this length is the order of the vortex diame-
ter and does not grow. A better approach is to mimic
experimental measurements of line length that are based
upon the scattering of beams of several types by the zero
density vortex cores [2–4]. A suitable diagnostic for the
length is obtained by counting the number of boxes where
� < �c � 0, then dividing by the core cross section for a
p ¼ 1 profile. Similar algorithms have been used before
[16–18] and shown both the growth and decay of vortex

FIG. 2 (color online). (a) t ¼ 4:5. After reconnection, the
waves deepen until second reconnections occur, allowing vortex
rings to separate from the origin vortices. Further incipient
reconnections, which lead to the formation of additional vortex
rings, can be seen along the vortices. (b) t ¼ 45. View showing
all the vortex rings for y > 0. Multiple vortex rings start sepa-
rating from the original antiparallel pair starting at t ¼ 12 and
propagate to larger y. By t ¼ 45 some have left the system.

FIG. 1 (color online). Three-dimension isosurfaces with � ¼
0:05. Nearly the entire vortices, which extend from y ¼ �16� to
y ¼ 16�, are shown in (a). The pair is propagating towards
smaller x. In (b), only y > 0 is shown to allow us to see into the
vortices through the x-z symmetry plane as they are starting to
reconnect across the x-y dividing plane. Simultaneously, kinks
form on each vortex in y. These kinks are the source of waves
that propagate out along the vortices after reconnection.

PRL 106, 224501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
3 JUNE 2011

224501-2



lines. Using �c ¼ 0:1, Fig. 3 quantifies the stretching seen
up to t � 4:5 and the subsequent decay of line length.

Decay relations.—With a direct simulation, an experi-
mentally observed property such as the decay of vortex line
length can be directly compared to the different compo-
nents of energy and used to test whether the interpretation
of the decay of line length as a measure of energy decay is
valid and can be compared with theories.

A possible relationship between line length and kinetic
energy is obtained through squaring the line length, which
provides an estimate for the effective enstrophy Z or mean
square vorticity. As demonstrated in a simulation of clas-
sical, homogeneous isotropic turbulence in a periodic box
[1], because the enstrophy Z is related to the dissipation of
kinetic energy by � ¼ ðd=dtÞK ¼ �Z, if the vortex line

length is defined as L ¼ R
ds � ffiffiffiffi

Z
p

and is observed to

decay as L� t�3=2, then Z� t�3 and the kinetic energy
decays as K � t�2. This decay law is never seen experi-
mentally, as all classical experiments have boundary
layers.

Without a normal fluid, the current consensus is that
energy can be removed in a quantum fluid only by the
nonideal boundaries. The outstanding question is to ex-
plain how the energy gets there. Three mechanisms have
been proposed: (i) quantum vortex lines reconnect to form
vortex rings, which then propagate out [19]; (ii) linear
waves, or phonons, are generated internally and propagate
out; (iii) waves on vortices could cascade to small scales
and their energy be radiated as phonons [20].
After a brief adjustment from the initial condition,

completed by t ¼ 0:5, the two primary stages shown in
Figs. 3(a) and 3(b) are as follows. (I) EI increases, Krc

decreases, and L grows until the second reconnection near
t ¼ 4:5 occurs, which is when the first and largest vortex
ring separates off, as illustrated by Fig. 2. (II) Thereafter, as
multiple vortex rings and phonons are being generated, the
local Krc decreases and L decays.

The depletion in line length with time is not continuous,
it occurs in steps, making it impossible to compare this
single series of events with power law decay. Each step can
be associated with specific events, either reconnections or
rings leaving the local domain.
Distributions and line length.—To understand the differ-

ent stages, subplots Figs. 3(c)–3(e) show distributions
of the interaction energy EI (2) with respect to density at
3 times. The t ¼ 0:5 distribution in Fig. 3(c) demonstrates
that initially EI has a maximum near � ¼ 1.
Figure 3(d) shows that at t ¼ 6, when stretching is

greatest, there has been a dramatic growth in EI, with
most of the growth for � � 0. This implies a large growth
in the number of points with � � 0. Note that the increases
in EI for t � 20 are compensated for by a strong decrease
in the global kinetic energy in Fig. 3(a).
Immediately after t ¼ 6, L begins to decrease dramati-

cally while the kinetic energy Krc continues to decay,

which is compensated for by a continuing increase in the
interaction energy EI. At the end of this stage, there is a
growth in large values of EI on either side of � ¼ 1, shown
by the distribution at t ¼ 30—around, not at, because for
�¼1, EI�0. This would be consistent with visualizations
of waves being emitted from colliding vortices [18,21].
The decrease in the global kinetic energy does not

persist. Eventually interaction energy is converted back
into kinetic energy, possibly due to oscillations between
Krc and EI in the released phonons. Similar oscillations

were observed in Gross-Pitaevskii calculations with a
symmetric Taylor-Green initial condition [15]. This would
not persist in a real experimental device because the waves
would be absorbed by the nonideal boundaries.
To mimic what decay in a real flow might look like,

especially experiments that generate tangles far from
boundaries [4], Fig. 3(b) shows the growth, then decay,
of the line length in the first y quadrant (0 � y � 4�) with
rescaled kinetic energy, showing that the local region ex-
hibits kinetic energy depletion in the final phase as the
vortex rings leave this region.
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FIG. 3 (color online). Estimates of the line length compared to
changes in the interaction and kinetic energies. (a) Analysis over
the full domain. There is strong EI and vortex line growth (L) for
0:5< t < 6. For 6<t<25 both Krc and L decrease. For T>30

the global kinetic energy Krc grows again. This is associated

with the accumulation of energy for y > 4�. (b) Only the first
y quadrant, the original interaction region. Here too, the initial
length and EI grow at the expense of Krc . Later Krc , half the

total Hamiltonian 0:5H and L decrease. (c)–(e) Distributions of
the EI with respect to density at t ¼ 0:5, 6, 30 to show how
energy appears to flow from Krc to EI to waves. Spectra: (f) by

t ¼ 48, Krc ðkyÞ has an enhancement high wave number regime

compared to EI. Spectra in the other directions have similar
trends but are less distinct. For comparison k�3 and k�5=3 lines
are drawn to demonstrate this effect, which could be indicating
some type of downscale energy cascade in Krc .
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Spectral cascade.—Is there a cascade to small scales?
Figure 3(f) shows spectra for the final time t ¼ 48. EIðkyÞ
and Krc ðkyÞ are shown because they are directly related to
conservation of energy and because they do not have
artificial high wave number regimes created by the singu-
larities in the vortex cores. In the first state of spectral
development, until the first ring separates off at t ¼ 4:5,
high wave number spectra are roughly k�3 in all directions
for both EI and Krc . This is similar to spectra in Euler

calculations [12]. After t ¼ 4:5, Krc ðkÞ gradually in-

creases at higher wave numbers, that is smaller scales,
but not EIðkÞ. The spectra shown at t ¼ 48 represent the

end of this process with EIðkyÞ � k�3, while Krc ðkyÞ �
k�5=3. The transfer of Krc to small scales is the significant

observation, not the exact power laws. Preliminary analysis
of the spectral interactions suggests a type of dual cascade,
with Krc having a forwards cascade while EI cascades to

large scales through nonlocal wave number interactions.
Colliding rings.—How much of the scenario portrayed

here has been seen before? To address this question, initial
conditions similar to earlier work have been simulated
[14,17,21]. Of these cases, a four ring case in Fig. 4
provides the best qualitative support for how generic the
role of stretching and reconnection seen here are. Figure 4
shows that (A) as the vortex rings become entangled in
Fig. 4(b), kinetic energy decreases sharply while interac-
tion energy and line length increase, and (B) as the tangle
disintegrates and small rings are released in Fig. 4(c), all
local quantities decay. Note: In this four vortex case, line
length is closely tied to EI, which decays more rapidly
than Krc .

In both of these cases and a previous four ring case [17],
there are multiple reconnections and strong intervortex
interactions. Recalculation and analysis of orthogonal

and two ring initial conditions [14,18,21], generate only
one or two reconnections, not the scenario here.
Summary.—A long-standing question in classical turbu-

lence is whether the energy cascade is mostly statistical, or
originates with the interaction of fluid structures. No matter
how special or nonclassical, even a single case that started
with a simple vortical configuration and then generated a
cascade could provide new insight. Such an initial condi-
tion could then be adapted to classical reconnection and
turbulence calculations to determine whether similar dy-
namics and stages can form. The results here suggest how
to start a search for similar classical events that would
begin with vortex stretching, then form a tangle followed
by multiple reconnections, and finally lead to the creation
of small scale dissipative structures.
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FIG. 4 (color online). Four colliding rings, the entangled state
generated, the final relaxed state, and the time dependence of the
kinetic and interaction energies plus a measure of line length in
the inner region that contained the original vortices. In this case
the measure of line length, the volume where � < 0:1, tracks the
interaction energy EI more closely than the kinetic energy.
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