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Three-body interactions have been found in physics, biology, and sociology. To investigate their effect

on dynamical systems, as a first step, we study numerically and theoretically a system of phase oscillators

with a three-body interaction. As a result, an infinite number of multistable synchronized states appear

above a critical coupling strength, while a stable incoherent state always exists for any coupling strength.

Owing to the infinite multistability, the degree of synchrony in an asymptotic state can vary continuously

within some range depending on the initial phase pattern.
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The interaction among particles or elements in classical
mechanics, electromagnetism, and many other fields of
physics is often modeled by two-body interaction. A de-
scription by the linear superposition of two-body interac-
tions has allowed us to predict the future orbits of the
planets and to design drug molecules that tightly bind to
the target protein. However, it has been revealed that the
net interaction experienced by an element cannot be writ-
ten as the linear superposition of the two-body interaction
in several systems, including physical systems [1], social
and economic systems [2], and neuronal networks [3].
A typical example is signal transmission from one neuron
to another. The signals are mediated by the release of
neurotransmitters from synapses, and some neurotransmit-
ters modulate the response of neurons to inputs from other
neurons (heterosynaptic plasticity) [4]. This modulation
can be regarded as a three-body interaction, although
synaptic transmission is conventionally modeled as a
two-body interaction. To show what occurs in such neuro-
nal networks with three-body interactions, we present a
numerical simulation of a network of Hodgkin-Huxley
neurons [5] with short-term heterosynaptic plasticity (see
[6] for details). In this model, the input from neuron j to i is
modulated by the relative spike timing of neuron i and
other neurons in this model. Figure 1(a) shows that this
neuronal network exhibits multistability, in which the
numbers of synchronized neurons at the steady state vary
depending on the initial conditions [Fig. 1(b)]. This seems
to be a novel behavior not observed in systems with only
two-body interactions. However, this system is too com-
plicated to show analytically why this multistability arises.

To analyze the neuronal networks with three-body inter-
action, we exploit the fact that neurons exhibit periodic
firings in many cases. Periodic activities are ubiquitous in
not only neuronal networks, but also phenomena studied in
other fields of biology, including gene expression in E. coli,
synchronous flashing of fireflies, and pedestrians’ gait [7].

The behavior of these periodic activities is described by a
form of phase oscillators in a quite general context [8].
However, three-body interaction among phase oscillators
has not been studied yet. Since phase oscillators are simple
enough to be analytically tractable and structurally stable,
theory of phase oscillators is a powerful tool in interpreting
and elucidating complicated experimental results in which
three-body interactions play an essential role. In this Letter,
we thus examine the effect of three-body interaction on the
dynamics of globally coupled phase oscillators.
As a natural extension of the system of limit-cycle oscil-

lators with two-body interaction, the N-oscillator system
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FIG. 1 (color online). Two examples of multistability arising
from three-body interaction. (a) Raster plot of the spikes in a
network of the Hodgkin-Huxley neurons with short-term hetero-
synaptic plasticity (N ¼ 500). The different-colored dots repre-
sent the firings in the networks starting from different initial
conditions. Neurons are sorted in ascending order of the firing
rate. The firing rate of each neuron is shown in (b). (c) Time
evolution of the order parameter R for three different initial
conditions in the phase-oscillator systems with nonuniform ran-
dom coupling (N ¼ 500). Phase distributions of oscillators at
t ¼ 0 and t ¼ 1 000 are shown on the left and right, respectively.

PRL 106, 224101 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
3 JUNE 2011

0031-9007=11=106(22)=224101(4) 224101-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.224101


with two- and three-body interaction is described by _Xi ¼
FiðXiÞ þP

j;kVijkðXi;Xj;XkÞ, where Fi describes the

dynamics of uncoupled oscillator i and Vijk is the phase

coupling function. Two-body interaction VijðXi;XjÞ is

then included as a special case of the three-body interaction
VijkðXi;Xj;XkÞ. Using the phase reduction technique, we

can describe the dynamics of oscillator i with one variable,
phase �i. Thus, the dynamics of the system of phase oscil-
lators with three-body interaction is generally given by

_� i ¼ !i þ
X
j;k

�ijkð�ji; �kiÞ; (1)

where !i is the natural frequency of oscillator i, �ji ¼
�j ��i, and �ijk is the coupling function.

We present one example in which typical novel features
arising from three-body interactions can be seen:

_� i¼!iþ 1

N

X
j

½aij sinð�jiþ�1ijÞþbij sinð2�jiþ�2ijÞ�

þ 1

N2

X
j;k

cijk sinð�jiþ�3ijkÞcosð�kiþ�4ijkÞ;

where aij; bij �N ð0:3; 0:01Þ, cijk �N ð6; 4Þ, and

�1ij; �2ij; �3ijk; �4ijk �N ð0; 0:09Þ. Here N ð�;�2Þ de-

notes the normal distribution with mean � and variance
�2. In all simulations throughout this Letter, the natural
frequencies are drawn from N ð0; 1Þ. Some typical time
evolutions of the order parameter R representing the degree
of synchrony are shown in Fig. 1(c), in which the above
system starts from different initial conditions. The order
parameter R is defined by

R expðic Þ ¼ 1

N

X
j

expði�jÞ; (2)

where c is the average phase associated with the order
parameter. As illustrated in Fig. 1(c), the system starting
from a completely uniform initial distribution remains
desynchronized, while the system with nonuniform initial
distribution can go to various synchronized states in a
similar way as in Fig. 1(a). Two numerical simulations
shown in Fig. 1 suggest that the system containing three-
body interaction can exhibit multistable behaviors in a
structurally stable manner.

To investigate these behaviors analytically, we here im-
pose three assumptions which do not spoil the essence of the
above dynamical behaviors. First we assume that the phase
coupling functions are identical for all oscillators, that is,
�ijkð�ji; �kiÞ ¼ �ð�ji; �kiÞ=N2. Second, without loss of

generality, we can assume that the phase coupling function
is symmetric, that is, �ð�ji; �kiÞ ¼ �ð�ki; �jiÞ, because
replacing the asymmetric coupling�asymðx; yÞwith symmet-

ric coupling �symðx;yÞ¼½�asymðx;yÞþ�asymðy;xÞ�=2 does

not change the dynamics. The last assumption is that invert-
ing the phases of oscillators inverts the sign of forces among
them, that is, �ð�ji;�kiÞ ¼ ��ð�ij; �ikÞ. Although this

seems a rather tight constraint, this antisymmetricity is

a property of the classical two-body coupling function
�ð�jiÞ ¼ sin�ji. We confirmed that the system under these

constraints could exhibit the qualitatively same behavior
as in Fig. 1(c). Finally, we note that, owing to the 2�
periodicity, � can be approximated by the finite Fourier
series �ð�ji;�kiÞ¼K2ðsin�jiþsin�kiÞ=2þK0

2ðsin2�jiþ
sin2�kiÞ=2þK3ðsin�jicos�kiþcos�ji sin�kiÞ, where K2,

K0
2, and K3 are constants. Thus, the dynamics of globally

coupled phase oscillators with this type of three-body cou-
pling is given by

_�i ¼ !i þ 1

N

X
j

ðK2 sin�ji þ K0
2 sin2�jiÞ

þ 2K3

N2

X
j;k

sin�ji cos�ki: (3)

We further simplify this model equation to make it
analytically tractable. Using order parameter R and setting
K2 ¼ 0, K0

3 ¼ 0, and K3 ¼ K, we obtain the equations of

dynamics with pure three-body interaction,

_� i ¼ !i � KR2 sin2�i; (4)

where �i ¼ �i � c is the relative phase of oscillator i to
the average phase c [Eq. (2)]. Because we are using a
corotating frame, we may here assume that the average
phase c is constant. We assume that the frequency of the
average phase c equals the mean of the distribution gð!Þ
of the natural frequency, the standard normal distribution.
This assumption simplifies the equations to be derived, and
in addition, the solution of the derived self-consistent
equation fits substantially well with the numerical results,
although this assumption may not hold in some cases.
Numerical simulations of Eq. (4) with N ¼ 10 000

oscillators and K ¼ 3 from three initial conditions are
shown in Fig. 2(a). Order parameter R takes various values
depending on the initial conditions. Synchronized and
desynchronized states coexist in the same parameter region.
The relationship between the natural frequency !i and the
phase �i is also shown in Figs. 2(b)–2(d). Figure 2(c)
indicates that oscillators can be phase locked to two specific
phases. Indeed, an oscillator with natural frequency !i

can be phase locked to �i ¼ 1
2 arcsin

!i

KR2 , �þ 1
2 arcsin

!i

KR2 ,
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FIG. 2. (a) Time evolution of the order parameter R from three
different initial conditions in the mean field model with
N ¼ 10 000 and K ¼ 3. (b,c,d) !i ��i relationship for differ-
ent initial conditions at t ¼ 10 000.
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if �KR2 � !i � KR2. On the other hand, Fig. 2(d)
shows that the system with the same parameter values can
exhibit a completely desynchronized state.

If all of the phase-locked oscillators are locked to
�i ¼ 1

2 arcsin
!i

KR2 , R is given by

R¼
Z KR2

�KR2
cos

�
1

2
arcsin

!

KR2

�
gð!Þd!

¼2KR2
Z �=4

��=4
cos�cos2�gðKR2 sin2�Þd��SðR;KÞ; (5)

where we used d!=d� ¼ 2KR2 cos2�, and assumed that
the non-phase-locked oscillators do not contribute to the
value of the order parameter. The self-consistent equation
R ¼ SðR;KÞ has a solution R ¼ 0 for any K. In addition,
S0ð0; KÞ ¼ @S

@R jR¼0 ¼ 0 suggests that this solution is stable.

For some K, the self-consistent equation has a nonzero
solution R ¼ r > 0 or two nonzero solutions r2 > r1 > 0
[Fig. 3(a)]. Equation (5) gives the order parameter of
the system in which all of the phase-locked oscillators take
�i ¼ 1

2 arcsin
!i

KR2 . Oscillator i, however, can also be phase

locked to �i ¼ �þ 1
2 arcsin

!i

KR2 . Defining nð�Þ as the num-

ber of oscillators phase locked to �, we characterize the dis-
tribution of the phase-locked oscillators with the function
qð�Þ ¼ ½nð�Þ � nð� þ �Þ�=½nð�Þ þ nð� þ �Þ�. Note that
jqð�Þj � 1. Then, the order parameter of the system is
given by

R ¼ 2KR2
Z �=4

��=4
qð�ÞCð�; R; KÞd� � S½R;K; qð�Þ�; (6)

where Cð�; R; KÞ ¼ cos� cos2�gðKR2 sin2�Þ.
The largest attainable R for coupling strength K is given

by the largest solution r2 of Eq. (5), while the smallest
attainable nonzero R for the coupling strength K is given
by the minimum of the largest positive solution of the self-
consistent equation Eq. (6) over all possible realizations
of qð�Þ. If R¼S½R;K;qð�Þ� has two nonzero solutions
r2>r1, there exists 0<�< 1 with which the largest
nonzero solution of R ¼ S½R;K; �qð�Þ� is smaller than
r2 because S½R;K; �qð�Þ� ¼ �S½R;K; qð�Þ� [Fig. 3(a)].
Hence, to obtain the lowest attainable R, we have to find
qð�Þ with which R ¼ S½R;K; qð�Þ� has only one nonzero
solution. In other words, we find the smallest r satisfying
S½r;K;qð�Þ�¼r and S0½r;K;qð�Þ�¼1 invarying qð�Þ, where

S0½r; K; qð�Þ� � @

@R
S½R;K; qð�Þ�jR¼r

¼ 4Kr
Z �=4

��=4
qð�ÞWð�; r; KÞCð�; r; KÞd�;

and

Wð�; r; KÞ ¼ 1þ Kr2 sin2�
g0ðKr2 sin2�Þ
gðKr2 sin2�Þ

[Fig. 3(c)]. To this end, first we fix R to r and examine
whether there exists a solution �1 � qð�Þ � 1 of the
equations S½r; K; qð�Þ� ¼ r and S0½r; K; qð�Þ� ¼ 1. If it
exists, there is a solution �1 � q1ð�Þ � 1 of equations

S½r; K; qð�Þ� ¼ r and S0½r; K; qð�Þ� ¼ s1 � 1 [Fig. 3(b),
blue short-dashed line], and there is a solution �1�q2ð�Þ
�1 of equations S½r; K; qð�Þ� ¼ r and S0½r; K; qð�Þ� ¼
s2 � 1 [Fig. 3(b), green ong-dashed line]. Conversely,
if q1ð�Þ and q2ð�Þ are given, �1�qð�Þ¼uq2ð�Þþ
ð1�uÞq1ð�Þ�1, where 0 � u ¼ 1�s1

s2�s1
� 1, is a solution

of the equations S½r; K; qð�Þ� ¼ r and S0½r; K; qð�Þ� ¼ 1
[Fig. 3(b), red solid line]. Thus, the existence of q1ð�Þ and
q2ð�Þ which satisfy S½r; K; q1ð�Þ� ¼ r, S0½r; K; q1ð�Þ� � 1,
S½r; K; q2ð�Þ� ¼ r, and S0½r; K; q2ð�Þ� � 1 is a necessary
and sufficient condition of the existence of the solution of
S½r; K; qð�Þ� ¼ r and S0½r; K; qð�Þ� ¼ 1. It is sufficient for
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FIG. 3 (color online). (a) For some qð�Þ, the self-consistent
equation R ¼ S½R;K; qð�Þ� has two solutions, r1 < r2 (brown
dashed line). Setting � appropriately makes R ¼ S½R;K; �qð�Þ�
have only one solution R ¼ r < r2 (red solid line). Note
that S0½r;K;�qð�Þ�¼1. (b) If we have S½r;K;q1ð�Þ�¼ r
and S0½r;K;q1ð�Þ�¼ s1�1 (blue short-dashed line) and
S½r;K;q2ð�Þ�¼ r and S0½r; K; q2ð�Þ� ¼ s2 � 1 (green long-
dashed line), we can obtain qð�Þ with which S½r; K; qð�Þ� ¼ r
and S0½r; K; qð�Þ� ¼ 1 hold (red solid line). (c,d,e) q2ð�Þ which
maximizes S0½r; K; qð�Þ� (e) under the constraint S½r; K; qð�Þ� ¼
r (d) is given by q2ð�Þ ¼ 2�½Wð�; r; KÞ � w2� � 1 (green long-
dashed line) where w2 is set to satisfy S½r; K; q2ð�Þ� ¼ r (c).
Under the same constraint, S0½r; K; qð�Þ� is minimized by
q1ð�Þ ¼ 2�½w1 �Wð�; r; KÞ� � 1 (blue short-dashed line)
where S½r; K; q1ð�Þ� ¼ r. (f) Attainable region of the order
parameter R (shaded orange region). Note that the incoherent
state R ¼ 0 is stable for any K (red solid line). (g) Phase diagram
of the system of phase oscillators when the strength of two-body
and three-body interactions are changed. The symbol in each
region is a schematic representation of the attainable values of
the order parameter R. Gray lines represent the range of R from
0 to 1. The attainable values and ranges of R are indicated
by black circles and boxes, respectively.
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us to calculate the maximum and the minimum of
S0½r; K; qð�Þ� under the constraints S½r; K; qð�Þ� ¼ r and
jqð�Þj � 1.

S½r; K; qð�Þ� and S0½r; K; qð�Þ� have the same domain of
integration, and their integrands differ by a factor of
Wð�; r; KÞ. Hence, the maximum of S0½r; K; qð�Þ� under
the conditions S½r; K; qð�Þ� ¼ r and jqð�Þj � 1 is given by
S0½r; K; q2ð�Þ� where q2ð�Þ ¼ 2�½Wð�; r; KÞ � w2� � 1.
Here �ðxÞ is the Heaviside function, and w2 is set to
satisfy S½r; K; q2ð�Þ� ¼ r. In this case, the phase-locked
oscillators are distributed according to nð�Þ=½nð�Þ þ
nð�þ �Þ� ¼ �½Wð�; r; KÞ � w2�. In other words, first
we adjust w2 to set S½r; K; q2ð�Þ� ¼ r [Fig. 3(d)], and
next we check whether S0½r; K; q2ð�Þ� is larger than 1
[Fig. 3(e)]. In the same way, we vary w1 to set
S½r;K;q1ð�Þ�¼ r, where q1ð�Þ¼2�½w1�Wð�;r;KÞ��1,
and check whether S0½r; K; q1ð�Þ� is smaller than 1.

Thus, we have theoretically obtained the region of the
order parameter which can be achieved by choosing suit-
able initial conditions [Fig. 3(f), red solid line]. In this
figure, the dots represent the data from numerical simula-
tions (N ¼ 10 000). The theoretical results agree with the
numerical ones, though several points with K < 3 lie out-
side of the theoretically derived region. This discrepancy
may be because the system size is too small or because we
assumed that the frequency of the average phase coincides
with the mean of the distribution gð!Þ.

Finally, we should remark that interactions in real-world
systems generally contain not only three-body but also
two-body interactions. We thus examine the behavior of
the system described by

_� i ¼ !i þ K2

N

X
j

sin�ji þ 2K3

N2

X
j;k

sin�ji cos�ki:

As Fig. 3(g) shows, as K3 increases, the system first starts
out exhibiting either a single synchronized or desynchron-
ized state depending on K2. Then briefly, a small window
in which these two states are bistable appears. Finally,
multistable synchronized states or, for smaller K2, a coex-
istence of desynchronized and multistable synchronized
states [Fig. 3(g), orange region] corresponding to the multi-
stability shown in Fig. 2, appears. This implies that our
theoretical result derived with pure three-body interaction
is structurally stable and generic.

In this Letter, we have examined the behavior of phase
oscillators with three-body interactions. We have found
that this system can take an infinite number of synchro-
nized states in a structurally stable manner [Fig. 3(g)]. We
have derived the range of the order parameter R that can be
attained by varying the initial condition. Our results are
different from the chimera state [9], because in our model
we can continuously control the order parameter of the
steady state by choosing the initial condition. In addition,
our model system can be completely incoherent even in
the K ! 1 limit (cf. [10]). Three-body interactions in

real-world systems and their behavior should be compared
to those of the present model. Neurophysiological experi-
ments [11] have shown that some prefrontal neurons keep
their level of activity for several seconds. This persistent
activity serves as working memory by encoding an analog
quantity in the firing rate of multistable neuronal networks.
Our results suggest the possibility that working memory
uses the degree of synchrony among neurons to encode an
analog quantity.
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