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We experimentally investigate the phase dynamics of laser networks with homogenous time-delayed

mutual coupling and establish the fundamental rules that govern their state of synchronization. We

identified a specific substructure that imposes its synchronization state on the entire network and show that

for any coupling configuration the network forms at most two synchronized clusters. Our results indicate

that the synchronization state of the network is a nonlocal phenomenon and cannot be deduced by

decomposing the network into smaller substructures, each with its individual synchronization state.
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It is well known that lasers can synchronize to lock their
optical phases when the coupling delay time between
them is relatively short (compared to the coherence time)
[1–4]. Moreover, optical phase synchronization between
two lasers can also occur even when the coupling delay
time greatly exceeds the coherence time of the lasers
themselves [5–7].

Here we experimentally present for the first time the
results on the phase dynamics and synchronization states of
laser networks with homogenous long time-delayed mu-
tual coupling. We first analyze the synchronization state of
simple network substructures (motifs) such as open chains
and closed rings and then move on to analyze how these
motifs interact with each other to form larger networks.

Experimental observations of intensity synchronization
with three time-delayed coupled lasers revealed that they
can be synchronized via nonsynchronized mediators [8,9].
With no time-delayed coupling, synchronization was dem-
onstrated to extend throughout an entire network [10,11].
The relation between the symmetry of small simple
coupled oscillator network motifs with short time-delayed
coupling and their synchronization states was demon-
strated both theoretically and experimentally [7,12].
However, the underlying interactions and synchronization
within and between the basic motifs that form such
networks are still an enigma, especially with long time-
delayed coupling.

Figure 1 schematically shows the experimental configu-
ration that we used for investigating phase synchronization
in laser networks with time-delayed coupling and repre-
sentative results. The experimental configuration includes
a degenerate laser cavity [13], an arrangement for coupling
different lasers, and an arrangement for detecting phase
synchronization between different lasers. The degenerate
cavity was composed of a Nd-Yag crystal gain medium that
can support several independent laser channels, a front
mirror of 10% reflectivity, a rear mirror of 40% reflectivity,
a mask of an array of N apertures arranged in a desired
two-dimensional lattice placed adjacent to the rear mirror,

and two lenses in a 4f arrangement whereby any transverse
electric field distribution at the mask plane was imaged
onto the front mirror plane. Thus, the laser beams do not
cross paths in the gain and remain uncoupled.
The coupling between the laser channels was achieved

by means of mutual injection of the delayed light signal
from each laser to its partner. This was accomplished by
means of a focusing lens placed at a distance f ¼ 0:2 m
behind the rear mirror of the laser, a 50=50 beam splitter
placed behind the lens, and four coupling mirrors all placed
within the Rayleigh focal range of the focusing lens [4].
The reflectivities of R1 and R3 were 100% and those of R2

and R4 40%, so that each coupling mirror reflected almost
equal light back at the lasers which characterizes the
coupling strength and hence generates nearly uniform
coupling strength (10% from R2 and R4 and 9% from R1

and R3). Each coupling mirror reflects the transverse field
Eðx; yÞ from the mask plane back to obtain a reflected

FIG. 1 (color online). Experimental configuration for coupling
several independent lasers and representative results. (a)
Includes a degenerate cavity, a coupling arrangement, and a
detection arrangement used to detect phase synchronization
between any specified lasers. (b) An example of the near-field
intensity distribution of seven lasers with added arrows that
denote the coupling connectivity which is rearranged for sim-
plicity at the right. Far-field intensity distributions of all seven
lasers, with and without coupling at the left.
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image of Eð� ðx� x0Þ;�ðy� y0ÞÞ, where (x0, y0) denote
the self-reflecting point of that mirror determined by its
tilting angle. By independently controlling the angular
orientations of all four coupling mirrors, we realized a
variety of connectivities between the lasers, whereby
each mirror connects pairs of lasers that are symmetric
around its self-reflecting point. Representative nearest
neighbor coupling between the seven lasers is illustrated
at the bottom of Fig. 1. Arrows in four different colors on
the near-field intensity pattern indicate which lasers are
coupled by which mirrors. The connectivity is more clearly
illustrated with the sketch of the rearranged laser locations
at the right.

The time delay for all 4 coupling mirrors was � ¼
2:66 ns, differing by less than 3 ps from one mirror to
another. This delay was much longer than the coherence
time of 10 ps for the individual lasers, so the coupling
signal arrives long after the phase memory is lost [6].
Figure 1 also includes representative examples for the
far-field intensity distributions of the seven lasers with
and without the coupling. As is evident, without coupling
the lasers are indeed independent and not synchronized,
whereby the far-field intensity is simply a sum of the
intensities from all individual lasers. This indicates that
we are indeed dealing with uncorrelated independent la-
sers, as one would expect from our degenerate cavity. With
the coupling mirrors in place, the far-field intensity pattern
is characterized by a high contrast fringe pattern indicating
that a high level of optical phase synchronization occurs.
The phase synchronization levels can be quantified by
measuring the second order correlation of the phase,
namely, the fringe visibility � [14].

We started our experiments by examining the phase
dynamics of simple motifs of chains and rings of lasers
with nearest neighbor time-delayed coupling. The results
are presented in Fig. 2. The experimental results for phase
synchronization of a chain of seven lasers are presented in
Fig. 2(a). Figure 2 a1 exemplifies the high fringe visibility
� of above 0.8 in the far-field interference pattern for any
pair of odd numbered lasers in the chain (shown here with
lasers 1 and 7 with � ¼ 0:91) indicating that their phases
are highly synchronized. High visibility fringes where also
observed for any pair of even numbered lasers in the chain.
However, the fringe visibility for nearest neighbor lasers,
e.g., 4 and 5, was below 0.1, as shown in Fig. 2 a2. These
results indicate sublattice synchronization (SLS), where
the chain splits into two phase synchronized clusters of
odd and even lasers that are not synchronized with each
other.

It is interesting to note that lasers that do not directly
interact, e.g., 1 and 7, are still highly synchronized. This
surprising result can be intuitively explained by noting that
lasers can synchronize to the common signal they receive.
Specifically, lasers 3 and 5 are synchronized because they
are both coupled to the same delayed signal of laser 4,

similarly to synchronization of three laser chains [8,9].
Lasers 2 and 6 are synchronized because they are both
coupled to the same delayed signal of lasers 3 and 5.
Finally, lasers 1 and 7 are synchronized because they are
both coupled to the same delayed signal of lasers 2 and 6,
and SLS emerges. Note that if the arrival times of the
different coupling signals differ by more than the coher-
ence time, SLS cannot occur.
Next we investigated the phase dynamics of a ring of

lasers with nearest neighbor time-delayed coupling. The
experimental results are presented in Figs. 2(b) and 2(c).
Figure 2 b1 and b2 show the cross sections of the far-field
interference patterns with a fringe visibility of � ¼ 0:1
for a pair of one even and one odd numbered lasers,
e.g., 1 and 2, and � ¼ 0:83 for a pair of two odd numbered
lasers, e.g., 3 and 5, all belonging to a ring of six lasers.
Figure 2 c1 and c2 show the far-field interference patterns
with � ¼ 0:87 for an even and an odd numbered laser,
e.g., 1 and 2, and � ¼ 0:85 for a pair of two even numbered
lasers, e.g., 4 and 6, all belonging to a ring of seven lasers.
As is evident, the ring of six lasers exhibits a synchroni-
zation pattern similar to the SLS observed for open chains
with � > 0:8 for any pair of two odd or two even numbered
lasers, and � � 0:1 for any pair of odd and even numbered
lasers. The ring of seven coupled lasers exhibits zero-lag
synchronization (ZLS), namely, a high degree of phase
synchronization with � > 0:8 between all pairs of lasers.
For a ring with an even number of six lasers, SLS is very

clearly demonstrated by the far-field interference pattern
shown in the lower part of Fig. 2(b). Here, high contrast
interference fringes are visible only in the horizontal di-
rection, indicating a high degree of phase synchronization

FIG. 2 (color online). Experimental phase synchronization re-
sults for chain and ring motifs. a1 and a2 are the far-field
interference pattern of lasers 1 and 7 and lasers 4 and 5, all of
which belong to a chain of seven lasers as shown in the sketch.
b1 and b2 are the cross sections of far-field interference pattern,
shown in the insets, of lasers 1 and 2 and lasers 3 and 5, all
belonging to a ring of six lasers. c1 and c2 are the cross sections
of the far-field interference pattern of lasers 1 and 2 and lasers 4
and 6, all belonging to a ring of seven lasers. Blue circles denote
experimental results and the solid red curve is the fitting curve.
Also shown are the near-field and far-field intensity distributions
of all the lasers in each motif. Lasers denoted in the sketch with
the same shade of blue belong to the same cluster.
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only between lasers in the same row (that belong to the
same sublattice). For a ring with an odd number of seven
lasers, ZLS is very clearly demonstrated by the far-field
interference pattern shown in the lower part of Fig. 2(c).
Here, high contrast interference fringes are visible along
both the horizontal and the vertical directions, indicating a
high degree of phase synchronization between all lasers.
Similar results of SLS were obtained for a ring of four
lasers, and ZLS for rings of three and five lasers.

We turn now to explore networks constructed from
several interconnected motifs with known synchronization
states. Representative experimental results for networks of
seven lasers with different topologies are presented in
Fig. 3. Each includes a far-field interference pattern of all
seven lasers that are coupled in accordance with the ad-
jacent schematic sketch. The individual lasers were posi-
tioned in space in accordance with the near-field image
at the bottom of Fig. 1. Figure 3(a) exemplifies the case
of two connected previously examined motifs, i.e., one of
rings of three lasers and one of six lasers, that are con-
nected with one common edge. Here there are high contrast
interference fringes along both the horizontal and the
vertical directions, indicating ZLS. Figure 3(b) depicts
two connected rings consisting of four and six lasers that
are connected with two common edges. Here there are high
contrast interference fringes only along the horizontal
direction indicating SLS. These results indicate that

networks maintain the SLS state only when they are com-
posed of motifs which all share the same SLS state.
Next we consider interconnected motifs that share only a

single laser. Figure 3(c) shows a triangle of lasers con-
nected to a chain of five lasers. Here, one might errone-
ously predict that SLS occurs with lasers 2 and 4 in one
sublattice and the remaining lasers in the other sublattice,
as depicted in the upper sketch. Similarly, Fig. 3(d) shows
two triangles connected by a three laser chain. Again one
might erroneously predict that SLS occurs with laser 5 in
one sublattice and the remaining lasers in the other sub-
lattice, as depicted in the upper sketch. But the actual
experimental far-field intensity interference patterns in
Figs. 3(c) and 3(d) very clearly indicate that both networks
exhibit ZLS. Indeed, SLS is not a consistent solution,
because it requires that laser 5 in Fig. 3(c) and lasers 1
and 4 in Fig. 3(d) must simultaneously synchronize to two
different nonsynchronized signals.
The results of Fig. 3 all point to a general rule: even a

single odd numbered loop breaks the consistency of SLS
thereby extending its frustration throughout the entire net-
work and forcing ZLS. Other examples of such nonlocal
behavior that confirm this rule are presented in [15].
The interplay between ZLS and SLS and the emergence

of at most two distinct synchronized clusters can be ex-
plained by resorting to an information mixing argument
based on the adjacency matrix [15]. Based on the theory of
stochastic matrices which play a central role in Markov
chain processes, one can show that the mixing of informa-
tion leads to a number of clusters governed by the greatest
common divisor (GCD) of the loops composing the net-
work [16,17]. For a network with mutual couplings, a loop
of size two always exists. Hence, for networks with even
numbered loops only the GCD ¼ 2 yields SLS, and
for networks with at least one odd numbered loop the
GCD ¼ 1 yields ZLS. Networks with three or more clus-
ters may therefore only occur when coupling is unidirec-
tional. Figure 4 shows representative examples on the
temporal evolution of information mixing that lead to

FIG. 3 (color online). Experimental phase synchronization re-
sults for four different networks composed from interconnected
motifs. These show the combined far-field intensity interference
pattern of all seven lasers coupled in accordance with the
adjacent schematic sketch. The nodes in each sketch represent
the individual lasers whose actual spatial location is in accor-
dance with the near-field image appearing in the bottom part of
Fig. 1, and the edges in each sketch represent the coupling
channels. In (c) and (d) the sketches that are not consistent
with the experimental data are crossed out.

FIG. 4 (color online). Information mixing argument that leads
to ZLS and SLS states. (a) is for an odd loop of five nodes; (b) for
an open chain of five nodes.
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ZLS and SLS states [16]. Specifically, the initial condition
for each node is denoted by a distinct color, the steps are
rescaled with time �, and at each time step the colors of a
node denote the union of colors from its driven nodes. The
colors of a specific node at any time step t indicate the set
of nodes or colors at t ¼ 0 which have been mixed.
Figure 4(a) shows how the mixing of information results
in identical nodes after 4 time steps for an odd loop of five
nodes, indicating a ZLS state. Figure 4(b) shows that two
distinct clusters are formed for a chain of five nodes.

To further elucidate our experimental results, we solved
the Kuramoto model that describes the phase dynamics of
time-delayed coupled oscillators [18]. Figure 5 shows
representative results obtained from the numerical solution
of the Kuramoto equations for six time-delayed coupled
oscillators. As is evident, with a time-delayed coupling �
shorter than the coherence time of the oscillators �coh,
nearest neighbor oscillators are synchronized. However,
with � > �coh they are not, similar to the experimental
results for a ring of six lasers. We also numerically solved
the Kuramoto equations for all the network configurations
in our experiments, and obtained similar corresponding
results [15]. In addition, we performed a numerical simu-
lation of the full laser rate equations for coupled laser
systems that includes also the full amplitude, phase, and
gain dynamics of each laser [2,6]. These more accurate
models yielded results essentially identical to those of the
far simpler Kuramoto equations.

In addition, we numerically solved the Kuramoto equa-
tions for 18 time-delayed coupled oscillators which again
confirms that only networks containing odd numbered

loops exhibit ZLS (see details in [15]). The Mermin-
Wagner theorem predicts that for low dimensional net-
works such as ours synchronization must degrade as the
network size increases [10,19]. We did not observe such
size related effects experimentally for networks up to seven
lasers nor numerically for networks up to 18 oscillators.
However, synchronization states for much larger networks
would require further investigation to fully ascertain size
related effects. We expect that in high dimensional net-
works, where the Hamilton path between all nodes is al-
ways finite, the synchronization state of the network would
be governed by our rules.
To conclude, we showed that synchronized laser net-

works with homogeneous time-delayed mutual coupling
exhibit at most two synchronized states for any coupling
configuration. One is a state of zero-lag synchronization
where all lasers synchronize to lock their optical phases
together, occurring when the network contains a ring of
odd number of lasers. The other is a state of sublattice
synchronization where two synchronized clusters are
formed. We believe that, although we used networks of
coupled lasers, our results may be applicable for modeling
other types of networks that are described by coupled
oscillators [20–23].
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FIG. 5 (color online). Numerical integration of the Kuramoto
model that describes the phase dynamics of six coupled oscil-
lators. Calculated second order correlation function of the phase
difference between two oscillators � versus the time delay �
normalized by the coherence time �coh. The results are for
different pairs of oscillators that belong to a loop of six time-
delayed coupled oscillators. The dashed green curve is for
oscillators 1 and 3; the solid red curve is for oscillators 1 and
2. The added sketch schematically illustrates the coupling con-
figuration. For additional information see [15].
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