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We present a new ab initio method that uses similarity renormalization group (SRG) techniques to

continuously diagonalize nuclear many-body Hamiltonians. In contrast with applications of the SRG to

two- and three-nucleon interactions in free space, we perform the SRG evolution ‘‘in medium’’ directly in

the A-body system of interest. The in-medium approach has the advantage that one can approximately

evolve 3; . . . ; A-body operators using only two-body machinery based on normal-ordering techniques. The

method is nonperturbative and can be tailored to problems ranging from the diagonalization of closed-shell

nuclei to the construction of effective valence-shell Hamiltonians and operators. We present first results for

the energies of 4He, 16O, and 40Ca, which have accuracies comparable to coupled-cluster calculations.
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Great progress has beenmade in ab initio nuclear structure
over the past decade, where it is now possible to calculate
properties of light nuclei up to about carbon [1,2] and low-
lying states of medium-mass nuclei near closed shells [3,4].
A key challenge in nuclear physics is to extend this ab initio
frontier to larger and open-shell systems. This requiresmeth-
ods that can handle the strong coupling between low and
high momenta in nuclear forces used in these calculations.

In recent years, new approaches to nuclear forces based
on renormalization group (RG) ideas have been developed
that decouple high-momentum degrees of freedom by low-
ering the resolution (or a cutoff) scale in nuclear forces to
typical nuclear structure momentum scales [5]. Such RG-
evolved potentials, known generically as ‘‘low-momentum
interactions,’’ greatly simplify the nuclear many-body
problem and enhance the convergence of structure and
reaction calculations, while the freedom to vary the reso-
lution scale provides a powerful tool to assess theoretical
uncertainties due to truncations in the Hamiltonian and
from many-body approximations [5–8].

One path to decouple high-momentum degrees of free-
dom is the similarity renormalization group (SRG), which
was introduced independently by Glazek and Wilson [9]
and Wegner [10]. The SRG consists of a continuous
sequence of unitary transformations that suppress off-
diagonal matrix elements, driving the Hamiltonian towards
a band- or block-diagonal form.Writing the unitarily trans-
formed Hamiltonian as

HðsÞ ¼ UðsÞHUyðsÞ � HdðsÞ þHodðsÞ; (1)

where HdðsÞ and HodðsÞ are the appropriately defined
‘‘diagonal’’ and ‘‘off-diagonal’’ parts of the Hamiltonian,
the evolution with the flow parameter s is given by

dHðsÞ
ds

¼ ½�ðsÞ; HðsÞ�: (2)

Here �ðsÞ � ½dUðsÞ=ds�UyðsÞ is the anti-Hermitian gen-
erator of the transformation. The choice of the generator
first suggested by Wegner,

�ðsÞ ¼ ½HdðsÞ; HðsÞ� ¼ ½HdðsÞ; HodðsÞ�; (3)

guarantees that the off-diagonal coupling of Hod is driven
exponentially to zero with increasing s [10]. Through
different choices for Hd and Hod, one can tailor the SRG
evolution to transform the initial Hamiltonian to a form
that is most convenient for a particular problem [11,12]. It
is this flexibility, together with the fact that one never
explicitly constructs and applies the unitary transformation
UðsÞ that makes the SRG a powerful alternative to conven-
tional effective interaction methods such as Lee-Suzuki
similarity transformations [5].
To date, the SRG applications to nuclear forces have

been carried out in free space to construct ‘‘soft’’ nucleon-
nucleon (NN) and three-nucleon (3N) interactions to be
used as input in ab initio calculations [5,13]. While
the free-space evolution is convenient, as it does not have
to be performed for each different nucleus or nuclear
matter density, it is necessary to handle 3N (and possibly
higher-body) interactions to be able to lower the
cutoff significantly and maintain approximate cutoff
independence of A > 3 observables. The SRG evolution
of 3N operators represents a significant technical challenge
that has only recently been solved in a convenient basis [7].
An interesting alternative is to perform the SRG

evolution directly in the A-body system of interest
[10–12]. Unlike the free-space evolution, the in-medium
SRG (IM-SRG) has the appealing feature that one can
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approximately evolve 3; . . . ; A-body operators using only
two-body machinery. The key to this simplification is the
use of normal ordering with respect to a finite-density
reference state j�i. Starting from a general second-
quantized Hamiltonian with two- and three-body interac-
tions, all operators can be normal ordered with respect to
j�i (e.g., the Hartree-Fock ground state), as opposed to the
zero-particle vacuum. Wick’s theorem can then be used to
exactly write H as

H ¼ E0 þ
X

ij

fijfayi ajg þ
1

2!2
X

ijkl

�ijklfayi ayj alakg

þ 1

3!2
X

ijklmn

Wijklmnfayi ayj ayk anamalg; (4)

where the normal-ordered strings of creation and annihila-

tion operators obey h�jfayi � � �ajgj�i ¼ 0, and the

normal-ordered 0-, 1-, 2-, and 3-body terms are given by

E0¼
X

i

Tiiniþ1

2

X

ij

Vð2Þ
ijijninjþ

1

6

X

ijk

Vð3Þ
ijkijkninjnk; (5)

fij ¼ Tij þ
X

k

Vð2Þ
ikjknk þ

1

2

X

kl

Vð3Þ
ikljklnknl; (6)

�ijkl ¼ Vð2Þ
ijkl þ

1

4

X

m

Vð3Þ
ijmklmnm; (7)

Wijklmn ¼ Vð3Þ
ijklmn: (8)

Here, the initial n-body interactions are denoted by VðnÞ,
and ni ¼ �ð"F � "iÞ are occupation numbers in the refer-
ence state j�i, with Fermi energy "F. It is evident from
Eqs. (5)–(7) that the normal-ordered terms, E0, f, and �,

include contributions from the three-body interaction Vð3Þ
through sums over the occupied single-particle states in the
reference state j�i. Therefore, truncating the in-medium
SRG equations to normal-ordered two-body operators,
which we denote by IM-SRG(2), will approximately
evolve induced three- and higher-body interactions
through the nucleus-dependent 0-, 1-, and 2-body terms.
As a preview, we refer to Fig. 1 with the very promising
convergence of the 4He ground-state energy, which is
comparable to coupled-cluster results.

Using Wick’s theorem to evaluate Eq. (2) with HðsÞ ¼
E0ðsÞ þ fðsÞ þ �ðsÞ and � ¼ �ð1Þ þ �ð2Þ truncated to
normal-ordered two-body operators, one obtains the
coupled IM-SRG(2) flow equations (with �ni � 1� ni):

dE0

ds
¼ X

ij

�ð1Þ
ij fjiðni � njÞ þ 1

2

X

ijkl

�ð2Þ
ijkl�klijninj �nk �nl; (9)

df12
ds

¼ X

i

½�ð1Þ
1i fi2 þ ð1 $ 2Þ�

þX

ij

ðni � njÞð�ð1Þ
ij �j1i2 � fij�

ð2Þ
j1i2Þ

þ 1

2

X

ijk

½�ð2Þ
k1ij�ijk2ðninj �nk þ �ni �njnkÞ þ ð1 $ 2Þ�;

(10)
d�1234

ds
¼X

i

½ð�ð1Þ
1i �i234�f1i�

ð2Þ
i234Þ�ð1$ 2Þ�

�X

i

½ð�ð1Þ
i3 �12i4�fi3�

ð2Þ
12i4Þ�ð3$ 4Þ�

þ1

2

X

ij

½�ð2Þ
12ij�ij34ð1�ni�njÞþð1;2$ 3;4Þ�

�X

ij

ðni�njÞ½ð�ð2Þ
j2i4�i1j3��ð2Þ

i1j3�j2i4Þ�ð1$ 2Þ�:

(11)

The IM-SRG(2) equations exhibit important similarities to
the CCSD approximation of coupled-cluster theory.
For instance, the commutator form of the flow equations
gives a fully connected structure in which HðsÞ has at least
one contraction with �. Therefore, there are no unlinked
diagrams and the flow equations are size extensive.
Combined with the OðN6Þ scaling with the number of
single-particle orbitals, this makes the method well suited
for calculations of medium-mass nuclei. The IM-SRG is
intrinsically nonperturbative, where the flow equations,

FIG. 1 (color online). Convergence of the in-medium SRG
results at the normal-ordered two-body level, IM-SRG(2), for
4He using the generators �I (left) and �II (right panel). The filled
(open) symbols correspond to solving Eqs. (9)–(11) with the
underlined terms omitted (included). The ground-state energy
E0ð1Þ is given as a function of the harmonic oscillator parameter
@! with increasing single-particle space emax � maxð2nþ lÞ.
The initial NN interaction is a free-space SRG-evolved potential
with � ¼ 2:0 fm�1 from the N3LO potential of Ref. [16]. For
comparison we show the coupled-cluster CCSD and CCSD(T)
energies in the emax ¼ 8 space (calculated at their @!minimum).
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Eqs. (9)–(11), build up nonperturbative physics via
the interference between the particle-particle and the
two particle-hole channels for � and between the two-
particle–one-hole and two-hole–one-particle channels for
f. The perturbative analysis reveals that the IM-SRG(2)
energy is third-order exact (as is the CCSD approximation)
and that f and � are second-order exact [14]. It also implies
that for calculations with harder interactions, the under-
lined terms in Eqs. (9)–(11) should be excluded because
they produce higher-order contributions (with alternating
signs) to E0 that are also generated by the inclusion of

higher-body normal-ordered interactions, �ð3Þ and W, cor-
responding to simultaneous 3p3h excitations. Because
such triples excitations can be sizable for hard potentials,
the underlined terms in Eqs. (9)–(11) should be omitted to
better preserve the partial cancellations that would occur

against the ½�ð3Þ; W� contributions. This is consistent with
the observation in Fig. 1 that for soft potentials our results
are insensitive to the inclusion of these terms. Therefore we
define the IM-SRG(2) truncation without these terms.

In this initial study, we restrict our attention to the
ground states of doubly magic nuclei and define
HodðsÞ ¼ fodðsÞ þ �odðsÞ, with

fodðsÞ ¼ X

ph

fphðsÞfaypahg þ H:c:; (12)

�odðsÞ ¼ X

pp0hh0
�pp0hh0 ðsÞfaypayp0ah0ahg þ H:c:; (13)

where p, p0 and h, h0 denote unoccupied (particle) and
occupied (hole) Hartree-Fock orbitals, respectively. We
consider two different cases for the generator �. First, we
take the Wegner choice �IðsÞ ¼ ½HdðsÞ; HodðsÞ�. Second,
we follow White [12] and define

�II¼X

ph

fphfaypahg
fp�fh��phph

�H:c:

þ X

pp0hh0

�pp0hh0 faypayp0ah0ahg
fpþfp0 �fh�fh0 þApp0hh0

�H:c:; (14)

where App0hh0 ¼ �pp0pp0 þ �hh0hh0 � �phph � �p0h0p0h0 �
�ph0ph0 � �p0hp0h and fp � fpp (the s dependence is

suppressed for simplicity). Both generators suppress
off-diagonal (1p1h and 2p2h) couplings and drive the
Hamiltonian towards diagonal form,

Hð1Þ ¼ E0ð1Þ þ fdð1Þ þ �dð1Þ; (15)

but White’s generator (�II) is significantly more efficient,
because the flow equations are less stiff in this case and
the evaluation of � at each step is significantly faster. The
evolved Hamiltonians using �I and �II are unitarily
equivalent if no truncations are made. Any differences in
energy eigenvalues therefore provide a measure of the
truncation error resulting from neglected three- and
higher-body normal-ordered terms in our calculations.

At the end of the flow, the reference state becomes the
ground state of Hð1Þ, with fully interacting ground-state
energy E0ð1Þ, and j�i decouples from the rest of the
Hilbert space (1p1h; 2p2h; . . . ; ApAh sectors),

QHð1ÞP ¼ 0 and PHð1ÞQ ¼ 0; (16)

where P ¼ j�ih�j and Q ¼ 1� P. This decoupling fol-
lows from the observation that all other normal-ordered
couplings annihilate the reference state, ½fdðsÞ þ
�dðsÞ�j�i ¼ 0. Combined with fodð1Þ and �odð1Þ being
driven to zero, this implies the block-diagonal structure of
Eq. (16). The IM-SRG is very flexible and alternative
choices ofHod (and �) can be used to target excited states,
single-particle properties, and to construct effective inter-
actions and operators for open-shell systems [11,12].
Figure 1 shows the IM-SRG(2) ground-state energy

E0ð1Þ for 4He calculated in increasing spaces defined by
the single-particle emax � maxð2nþ lÞ. For all cases the
flow equations, Eqs. (9)–(11), were solved in a jj-coupled
basis. The �I and �II results agree within 20 keV, which
suggests the truncation to normal-ordered two-body inter-
actions is a controlled approximation. This is consistent
with Fermi system arguments for interparticle interactions
where a finite-density reference state is close to the inter-
acting ground state [15]. In addition, the IM-SRG(2)
emax ¼ 8 energy is essentially converged and within
20 keV of the exact NCSM diagonalization [7], and in
good agreement with the coupled-cluster CCSD(T) ener-
gies (based on the code of Ref. [3]). We stress that the
agreement is obtained at the normal-ordered two-body
level without including residual three-body interactions.
The suppression of HodðsÞ is illustrated in Fig. 2, which

shows the �I evolution of normal-ordered two-body matrix
elements �ijkl. As expected, the off-diagonal couplings

(ijkl ¼ pphh or hhpp) are rapidly driven to zero. An
important practical consequence is that many-body
approximations become more effective under the SRG
evolution before complete decoupling has been reached.

FIG. 2 (color online). In-medium SRG evolution of normal-
ordered two-body matrix elements �ijkl connecting hole-hole

(hh) and particle-particle (pp) states for 16O starting from a
smooth-cutoff Vlowk with � ¼ 1:8 fm�1. The color scale is in
MeV, and initial and s-evolved results are shown. The axes label
two-body jj-coupled states jðna; la; ja; tza Þ; ðnb; lb; jb; tzb Þ;
J ¼ 0i. The �ijkl where ijkl ¼ ppph or hhhp, which are not

driven to zero with the current generator, are not shown.
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Figure 3 shows the IM-SRG(2) results for 4He starting
from a ‘‘bare’’ N3LO potential, which is a harder initial
interaction. The ground-state energy clearly converges to a
value close to the CCSD result. The failure of many-body
perturbation theory in this case verifies that the IM-SRG is
an intrinsically nonperturbative method.

Finally, we apply the IM-SRG to calculate the ground-
state energies of 16O and 40Ca in Fig. 4 starting from low-
momentum interactions. As for the 4He results of Fig. 3,
the calculations are well converged and have accuracies
that closely track the CCSD energies. As discussed above,
the IM-SRG(2) includes some simultaneous 3p3h excita-
tions for E0ðsÞ that partially cancel against contributions
that would arise if normal-ordered three-body operators
were kept in the flow equations. This motivated excluding
the underlined terms in Eqs. (9)–(11). The omitted terms
are negligible for soft interactions, as shown in Fig. 1, but
they become larger for hard interactions such as the ‘‘bare’’
N3LO potential used here, and thus require a consistent
treatment either by omitting them in the IM-SRG(2) equa-
tions, or by including normal-ordered three-body operators
in the flow equations. In the former case, we find here an
accuracy that is comparable to CCSD calculations.

In summary, we have shown that the in-medium SRG is
a promising method for ab initio calculations of light and
medium-mass nuclei. The use of normal ordering allowed
us to evolve the dominant induced 3; . . . ; A-body interac-
tions using only two-body machinery. We have presented
first IM-SRG(2) results for the ground-state energies of
closed-shell nuclei, which were in very good agreement
with CC calculations. Work is in progress to include 3N
forces and to study effective valence shell-model
Hamiltonians for open-shell systems. The same IM-SRG
flow equations apply to the normal-ordered 0-, 1-, and
2-body parts of operators.
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FIG. 4 (color online). Convergence of the IM-SRG(2) energy
E0ð1Þ for 16O (left) and 40Ca (right panel) using the generator
�II (solid symbols) and in comparison to CCSD results (dashed
lines). The notation is the same as in Fig. 1. The initial VNN is a
smooth-cutoff Vlow k with � ¼ 1:8 fm�1 for 16O and a free-
space SRG potential with � ¼ 1:8 fm�1 for 40Ca, both evolved
from the N3LO potential of Ref. [16].

FIG. 3 (color online). Convergence of the IM-SRG(2) energy
E0ð1Þ for 4He using the generator �II and starting from the
‘‘bare’’ N3LO potential of Ref. [16]. The notation is the same as
in Fig. 1. The converged IM-SRG(2) energy agrees well with the
CCSD result (the coupled-cluster energies are taken from
Ref. [3]), while second- and third-order many-body perturbation
theory, MBPT(2) and MBPT(3), clearly break down.
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