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The radiative neutron capture on lithium-7 is calculated model independently using a low-energy halo

effective field theory. The cross section is expressed in terms of scattering parameters directly related

to the S-matrix elements. It depends on the poorly known p-wave effective range parameter r1. This

constitutes the largest uncertainty in traditional model calculations. It is explicitly demonstrated by

comparing with potential model calculations. A single parameter fit describes the low-energy data

extremely well and yields r1 � �1:47 fm�1.
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Introduction.—Low-energy nuclear reactions play
a crucial role in big bang nucleosynthesis (BBN), stellar
burning, and element synthesis at supernova sites [1–3].
They also play an important role in testing astrophysical
models and physics beyond the standard model (SM) of
particle physics. Often the key nuclear reactions occur
at energies that are not directly accessible in terrestrial
laboratories. Radiative proton capture on beryllium
7Beðp; �Þ8B is one of them—it is important for boron-8
production in the Sun, whose weak decay results in the
high energy neutrinos that are detected at terrestrial labo-
ratories looking for physics beyond the SM. The relevant
solar energy, the Gamow peak, for this reaction is around
20 keV [4]. This necessitates theoretical extrapolation to
solar energies of known experimental capture data from
above around 100 keV. Current extrapolations introduce
5%–20% error [4–6]. A model-independent effective field
theory (EFT) calculation would be very useful in constrain-
ing them.

In an EFT, one identifies the relevant low-energy degrees
of freedom and constructs the most general interactions
allowed by symmetry without modeling the short distance
physics. The interactions are organized in a low momen-
tum expansion. At a given order in the expansion, a finite
number of interactions has to be considered and an a priori
estimate of the theoretical error can be made. The latter is
crucial due to astrophysical demands [1,2,4]. The former is
important because many processes involve external cur-
rents, and any prescription used in phenomenological mod-
els involves some uncertainty. As an example, the cross
section for nðp; �Þd at BBN energies was calculated within
EFT to an accuracy of about 1% [7]. Systematic treatment
of two-body currents was necessary to achieve this level of
precision, and it addressed a critical need [1] for nuclear
theory input in astrophysics.

Applications of EFT to systems with A * 5 is still
challenging. However, some loosely bound systems, such
as halo nuclei, open new possibilities. The small separation

energy of the valence nucleons in halo nuclei provides a
small expansion parameter for constructing a halo EFT [8].
The 8B is a halo nucleus with a proton weakly bound to the
7Be core by 0.1375 MeV. The 7Beðp; �Þ8B calculation
would be an important step in developing EFT techniques
for weakly bound nuclei as has been accomplished in the
few nucleon systems. In Ref. [9], electromagnetic transi-
tion in the halo system 11Be was considered. Experiments
such as those planned at the future FRIB [10] would
explore exotic nuclei near the drip lines where halo sys-
tems abound. Structure and reactions with halo EFT can
serve as benchmarks for phenomenological models.
We consider the low-energy reaction 7Liðn; �Þ8Li, which

is an isospin mirror to 7Beðp; �Þ8B. The n-7Li system
allows formulating the EFT for the nuclear interactions
without the added complication of the Coulomb force.
Additionally, 7Liðn; �Þ8Li is a key process in inhomoge-
neous BBN models. Its reaction rate impacts the
abundance of 7Li and the production of carbon-oxygen-
nitrogen in the early universe, thus constraining alternative
astrophysical scenarios [11]. Traditionally 7Liðn; �Þ8Li
has been calculated in a single-particle approximation as
a 7Li core plus a valence neutron interacting via a Woods-
Saxon potential, e.g., Refs. [5,12,13]. This approximation
is valid at low energies where the internal structure of the
7Li core is not probed, for example, much below the
threshold for 7Lið�; 3HeÞ�, which is around 2.5 MeV. In
the following we show that the capture cross section below
�100 keV is very sensitive to the p-wave effective range
r1, a result that carries over to the mirror 7Beðp; �Þ8B
reaction.
Interaction.—The relevant low-energy nuclear degrees

of freedom, here, are the pointlike neutron, 7Li, and 8Li
with spin-parity 1

2
þ, 32

�, and 2þ, respectively. The relevant
incoming n-7Li states are s waves: 3S1,

5S2 in the spectro-
scopic notation 2Sþ1LJ. The ground state is a 2þ state that
is primarily the symmetric combination of the possible
p-wave states 3P2 and 5P2 [14]. Conservation of parity
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implies that the reaction 7Liðn; �Þ8Li proceeds through the
electric dipole transition E1 at lowest order.

The leading order (LO) s-wave interactions contain no
derivatives. The two-component spin- 12 neutron field NðxÞ
and four-component spin- 32

7Li field CðxÞ can be combined

into the 3S1 and 5S2 states using the Clebsch-Gordan
coefficient matrices Fi,Qij asN

TFiC andNTQijC, respec-

tively. The vector index in Fi relates to the three magnetic
quantum numbers in the spin S ¼ 1 channel. The symmet-
ric, traceless matrices Qij relate to the five magnetic quan-

tum numbers in the spin S ¼ 2 channel. We write the
s-wave LO Lagrangian as

LðsÞ ¼ gð1ÞðNTFiCÞyðNTFiCÞ
þ gð2ÞðNTQijCÞyðNTQijCÞ; (1)

where a single momentum-independent interaction in each
of the 3S1 and

5S2 channels was kept. The higher derivative
terms are suppressed at low energy. The 2� 4 Clebsch-
Gordan matrices are given as

Fi¼�i
ffiffiffi
3
p
2

�2Si; Qij¼� i
ffiffiffi
8
p �2½�iSjþ�jSi�; (2)

where Si’s are spin-
1
2 to spin- 32 transition matrices [8] and

�i’s are the usual Pauli matrices.
The interaction in Eq. (1) produces an s-wave ampli-

tude; Fig. 1. It is a geometric series, summed to give

iAð�Þ
EFTðpÞ ¼

igð�Þ

1� igð�ÞLðpÞ ; (3)

where gð�Þ corresponds to gð1Þ; gð2Þ in the respective spin

channels and LðpÞ ¼ � i�
2� ð�þ ipÞ is the loop contribu-

tion with reduced mass � at the renormalization scale �.
The loop integral LðpÞ is evaluated in the power divergence
subtraction scheme [15] where divergences in both
D ¼ 4 and lower space-time dimensions are subtracted.
Matching Eq. (3) to the low-energy effective range
expansion (ERE) amplitude fixes the EFT couplings as

gð�Þð�Þ¼ ð2�Þ=½�ð��1=að�Þ0 Þ� with the scattering lengths

að2Þ0 ¼ �3:63� 0:05 fm, að1Þ0 ¼ 0:87� 0:07 fm [16].

In Ref. [17], initial state interactions using ERE were
also considered.
The final 8Li bound state is in a p wave that we consider

shallow similar to its isospin mirror 8B nucleus. The EFT
for shallow p-wave states was formulated in Ref. [8] where
it was shown that, unlike swave, it requires not one but two
nonperturbative EFT interactions. The renormalization of
loops is easily accomplished in the dimer formalism. The
interactions in the 3P2 and 5P2 states are constructed by
combining the matrices Fi;Qij and the Galilean invariant

velocity difference vector ðvC � vNÞk into a p-wave dimer
with total J ¼ 2. We write the p-wave Lagrangian as

LðpÞ ¼ �yij
�

�ð1Þ þ
�
i@0 þ r

2

2M

��
�ij

þ ffiffiffi
3
p

hð1Þ
�
�yijNTFx

� r
!

MC

� r
 

MN

�

y
Cþ H:c:

�
Rijxy

þ �yij
�
�ð2Þ þ

�
i@0 þ r

2

2M

��
�ij þ hð2Þ

ffiffiffi
2
p

�
�
�yijNTQxy

� r
!

MC

� r
 

MN

�

z
Cþ H:c:

�
Txyzij; (4)

where �ij (�ij) is the dimer in the 3P2 (
5P2) channel, and

Rijxy ¼ ½	ix	jy þ 	iy	jx � 2
3	ij	xy�=2, Txyzij ¼ ½
xzi	yjþ


xzj	yi þ 
yzi	xj þ 
yzj	xi�=2. The interactions inLðpÞ are
equivalent to the ones with only neutron-core short-range
interactions without a dimer field. In terms of Feynman
diagrams, the four-fermion interaction is replaced in
the dimer formulation by a dimer exchange; Fig. 1. The
nonperturbative iteration of the leading operators is accom-
plished by ‘‘dressing’’ the dimer propagator with nucleon-
core loops. For a given spin channel � ¼ 1 (3P2) or � ¼ 2
(5P2), the dressed dimer propagator, proportional to the
elastic amplitude, reads

iDð�Þðp0;pÞ ¼ i

�ð�Þ � �2=ð2�Þ þ 2hð�Þ2fðp0;pÞ=�
; (5)

where the loop contribution fðp0;pÞ ¼ 1
4� ð�3 � 3

2 �
2�þ

�
2 �

3Þ with �¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2�p0þ�p2=M� i0þ
p

, M¼MNþMC.

Matching the EFT amplitudes to the p-wave ERE deter-

mines the coupling pair (�ð�Þ; hð�Þ). Again, only the first
two ERE parameters are kept since EFT requires two
operators at LO.
Radiative capture.—The LO capture cross section can

be calculated via minimally coupling the photon by gaug-
ing the 7Li core momentum pC ! pC þ ZCeA, where
ZC ¼ 3 is the 7Li core charge. The E1 contribution comes
from the diagrams in Fig. 2. The center-of-mass (c.m.)
kinematics are defined with p (k) the core (photon)

momentum and k̂ � p̂ ¼ cos�. Formally we take p� �

FIG. 1. Að�Þ
0 is the 3S1;

5S2 scattering amplitude. Að�Þ
1 is the

3P2;
5P2 scattering amplitude. Double line is the 7Li propagator,

single line the neutron propagator, dashed line the bare dimer
propagator.
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as the small scale where � ¼ ffiffiffiffiffiffiffiffiffiffi
2�B
p � 57:8 MeV, with

B � 2:03 MeV the 8Li binding energy. Then at LO
the Mandelstam variable s � ðMN þMCÞ2 ¼ M2 and
jkj ¼ k0 � ðp2 þ �2Þ=ð2�Þ. We get for the c.m. differen-
tial cross section

d�

d�d cos�
¼ 1

64�2s

jkj
jpj jMj

2 � 1

64�2M2

jkj
jpj jMj

2: (6)

The capture from the initial state 5S2 to the 5P2 final
state (spin channel 2) dominates due to the larger initial

state scattering length að2Þ0 > að1Þ0 . The divergence in

Fig. 2(b) is canceled by Fig. 2(d) [9]. Summing over all
polarizations and spins

jMð5P
2
Þj2 ¼ 5

�
ZCMN

M

�
2 64��M2jhð2Þ

ffiffiffiffiffiffiffiffiffi
Zð2Þ
p

j2
�

�
�
j1þXj2� p2sin2�

p2þ�2

�
2�2

p2þ�2
þXþX�

��
;

X¼ i

�1=að2Þ0 � ip

�
p� i

2

3

�3� ip3

p2þ�2

�
; (7)

with � ¼ e2=ð4�Þ, the dimer polarization sum
P

"ij"
�
xy ¼

Rijxy [18], and the wave function renormalization

jhð2Þ2Zð2Þj ¼ 2�=j3�þ rð2Þ1 j, where rð2Þ1 is the effective

range in the 5P2 scattering amplitude. Zð2Þ is defined as
the residue at the pole in the dressed dimer propagator

Dð2Þðp0;pÞ. The capture from 3S1 to
3P2 state has the same

exact expression as Eq. (7) except that að2Þ0 , rð2Þ1 , and Zð2Þ
are replaced by the corresponding parameters in the spin
channel 1. The differential cross section averaged over
initial spin states is

d�

d cos�
¼ 1

32�M2

jkj
jpj

1

8

jMð5P
2
Þj2 þ jMð3P

2
Þj2

2
; (8)

taking the 8Li nucleus as a symmetric combination

ðj3P2i þ j5P2iÞ=
ffiffiffi
2
p

of final states.
The parameters in �ðpÞ can be determined from elastic

n-7Li scattering data and 8Li binding energy. However, the

p-wave effective range rð�Þ1 is not known accurately. This is

the main theoretical uncertainty at this order. Changing the

effective range rð�Þ1 modifies Zð�Þ and moves the cross

section up or down by a multiplicative factor. In traditional
potential model calculations, the parameters are deter-
mined by reproducing the 8Li binding energy. However,
this does not constrain the effective range and other pa-
rameters of the ERE. For example, in a Woods-Saxon

potential VðrÞ ¼ �v0½1þ expðr�Rc

ac
Þ��1 different choices

for the depth v0, range Rc, diffusiveness ac can be made to
reproduce the known 8Li binding energy. This, however,
produces different effective ranges, and constitutes an
irreducible source of error in the theoretical calculations.
Comparing the contributions to the capture cross section

from the two spin channels analytically, we get

�ð5P2
Þ

�ð5P2Þ þ �ð3P2Þ

��������p¼0
¼

�
1þ ð3� 2að1Þ0 �Þ2
ð3� 2að2Þ0 �Þ2

��1

� 0:81; (9)

using the same effective range r1 in both spin channels.
This ratio is close to the experimentally observed ratio
[19]. From Eqs. (7) and (8) one can see that the total cross

section at low energy is not independently sensitive to rð2Þ1
and rð1Þ1 . This is confirmed by our fit to data.

In Fig. 3, we compare potential model calculations using
Tombrello’s [12] and the Davids-Typel [5] parameters to
EFT curves. At low energy the potential model results can
be reproduced in EFTwith a small variation in the effective

FIG. 2. 7Liðn; �Þ8Li: Wavy lines represent photons. ‘‘. . .’’ rep-
resent initial state s-wave interaction.
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FIG. 3 (color online). Potential models: long-dashed blue
curve from Davids-Typel [5], dashed red curve from
Tombrello [12]. Top panel: solid black curve EFT with r1 ¼
�0:3=fm, dot-dashed black curve EFT with r1 ¼ �0:46=fm.
Bottom panel: solid black curve EFT with r1 fitted to data.
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range �0:46 	 r1 	 �0:3 fm�1. At higher energies they
differ since potential models include ERE parameters
beyond the scattering length and effective range. A fit to
data from Ref. [20] in the energy range En � 2–700 eV
gives r1 ¼ �1:47 fm�1. This value is compatible with
the Wigner bound [21] which, for a nucleon-core
interaction shorter than 3 fm, restricts r1 to be smaller
than around �1 fm�1. Following Ref. [20], their data
and the theory curves in the bottom panel in Fig. 3 were
divided by the known experimental branching ratio 0.89 to
the ground state and compared to a few other available data
[22–24]. The r1 was fitted to the unscaled data for tran-
sition to the ground state as appropriate. It is clear that the
theory error at low energy comes from the uncertainty in
the effective range at LO.

Conclusions.—Using a model-independent formalism
we demonstrated and quantified the theoretical uncertainty
in the 7Liðn; �Þ8Li calculation associated with phenome-
nological potentials in the single-particle approximation.
The LO result depends on the poorly known p-wave
effective range parameter r1. Without detailed knowledge
about r1, model calculations deviate from data at low
energy. We extract this effective range parameter by fitting
our analytic form to data.

We stress that this sensitivity to r1 at low energies is a
consequence of having two operators for shallow p-wave
states at LO. Therefore, the conclusions of the present work
also apply to the 7Beðp; �Þ8B reaction. Coulomb interac-
tions in pþ 7Be scattering and 7Beðp; �Þ8B reaction are
under investigation [25].

The EFT expression for 7Liðn; �Þ8Li capture is consis-
tent with low-energy data, which is lower than model
calculations [5,12] as shown. This reaction affects 7Li
abundances, and the impact of the uncertainty in r1 in
inhomogeneous BBN can be explored using our result.

At higher order in the EFT expansion, the cross section
would get corrections from higher order initial and final
state interactions and two-body currents. The former can
be related to the ERE. At very low energy, it is the
final state interactions, which modify the wave function
renormalization constants, that are important. At next-to-
next-to-leading order the shape parameter associated
with p-wave interaction contributes [8,25]. In addition,

at higher order two-body currents such as EiðNFjCÞy �
½NFxðr

!
=MC �r

 
=MNÞyC�Rijxy, where Ei is the electric

field, contribute. These operators are not
constrained by elastic scattering. A higher order EFT
calculation would reduce theoretical errors though at the
expense of additional parameters. This is not a drawback as
what we gain is a model-independent understanding of the
sources of higher order contributions and a more detailed
knowledge about the kind of experimental input that is
required to better constrain the low-energy theory.
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