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We analytically and numerically study spin transport in a one-dimensional Heisenberg model in linear-

response regime at infinite temperature. It is shown that as the anisotropy parameter � is varied spin

transport changes from ballistic for �< 1 to anomalous at the isotropic point � ¼ 1, to diffusive for finite

�> 1, ending up as a perfect isolator in the Ising limit of infinite �. Using perturbation theory for large �

a quantitative prediction is made for the dependence of diffusion constant on �.
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The one-dimensional spin 1=2 Heisenberg model is one
of the oldest quantum models [1] being also the simplest
model of interacting quantum particles. Despite being ex-
actly solvable by the Bethe ansatz, [2] calculating its
dynamical properties, like transport, is by no means sim-
ple. Understanding transport in the Heisenberg model is
important for several reasons. First, it is still not known
what are the necessary requirements for a system to display
phenomenological transport laws where a current is pro-
portional to the gradient of the driving field. Second,
motivation comes from the condensed matter where one
would like to understand transport in strongly correlated
electron systems. A paradigmatic model is the Hubbard
model, thought to be related to the problem of high-Tc

superconductivity, whose low energy excitations can be
described by the antiferromegnetic Heisenberg model.
The Heisenberg model is with a very high accuracy real-
ized also in the so-called spin-chain materials [3]. One-
dimensional spin chains are receiving increased attention
also from the cold-atoms community, where they can be
experimentally realized [4]. Particularly notorious to
understand is the transport of magnetization. It has been
actively studied for more than 20 years, yet the subject is
still hotly debated. In particular, numerical calculations
sometimes give conflicting results while there are almost
no rigorous statements, exceptions are a finite Drude
weight at T ¼ 0 [5] and recently also for T ¼ 1 [6],
both for �< 1, signaling ballistic transport. Various,
mostly numerical approaches, range from the Mazur in-
equality [6,7], the Bethe ansatz calculation [8], exact diag-
onalization [9], quantum Monte Carlo [10], Lanczos
method [11], wave-packet evolution [12], Luttinger liquid
theory [13], master equation [14], correlation functions
[15]. Because the model is solvable one would be tempted
to think that it is ballistic [16]. However, recently a
solvable diffusive quantum model has been found [17].
There is also mounting evidence [12,14,15] that it is dif-
fusive for �> 1.

The results presented in the present Letter, together with
other recent works, enable us to give a complete picture

of spin transport in the linear-response regime in the
Heisenberg model. For �< 1 the model is ballistic at
infinite temperature [6] as well as at any finite or zero [5]
temperature. At � ¼ 1 our results show anomalous trans-
port at infinite temperature. It is also plausible to expect
anomalous behavior at finite temperatures. For �> 1 and
infinite temperature we show diffusive transport. Recent
work [18] shows that as one decreases temperature,
the diffusion constant increases, possibly exponentially
fast in 1=T. At temperatures lower than the gap transport
trivially stops. As one lowers � towards the isotropic
point the diffusion constant diverges at any temperature,
see also [18].
To describe a nonequilibrium situation we couple

boundary spins of the chain to magnetization reservoirs.
Time evolution of the density matrix describing the chain
evolves according to the Lindblad master equation,

d�=dt ¼ i½�;H� þLdisð�Þ ¼ Lð�Þ; (1)

where the dissipative linear operatorLdis describing bath is

expressed in terms of Lindblad operators Lk, Ldisð�Þ ¼
P

kð½Lk�; L
y
k � þ ½Lk; �L

y
k �Þ. Reservoirs are realized by two

Lindblad operators at each end, LL
1 ¼ ffiffiffiffi

�
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1��
p

�þ
1 ,

LL
2 ¼ ffiffiffiffi

�
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ�
p

��
1 at the left end and LR

1 ¼ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�

p
�þ

n , LR
2 ¼ ffiffiffiffi

�
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1��
p

��
n at the right end,

�� ¼ ð�x � i�yÞ=2. We fix � ¼ 1. In the diffusive regime
for�> 1 the diffusion constant does not depend neither on
the value of � nor on the detailed Lindblad operators used
to model the bath [19]. Our Lindblad operators are such
that they always induce a nonequilibrium steady state
(NESS) with almost zero average energy density, which
therefore corresponds to an infinite temperature [20]. The
Hamiltonian is

H ¼ Xn�1

j¼1

ð�x
j�

x
jþ1 þ �y

j�
y
jþ1Þ þ��z

j�
z
jþ1: (2)

Small �.—In this section we are interested in small �,
so that the �z

j�
z
jþ1 term acts as a perturbation of the XX
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model. Analytical perturbative results will serve as a
springboard for the discussion of transport for not so small
values of �< 1. We split the Lindblad superoperator into

two parts, L ¼ Lð0Þ þ �LðzzÞ, where Lð0Þ is the part for

� ¼ 0, while LðzzÞ is the perturbation, i.e., LðzzÞð�Þ ¼
i½�;Pj�

z
j�

z
jþ1�. For � ¼ 0 the NESS solution of this

master equation, denoted by �0, is nondegenerate and
ballistic and can be neatly written in a matrix product
operator form with matrices of fixed dimension 4 [21].
Perturbation series ansatz for the NESS for small � is � ¼
�0 þ � � �1 þ�2 � �2 þ � � � . We want to calculate the
first two orders in�. Also, in all terms wewill be interested
only in the lowest order terms in the driving �, meaning
that we study linear-response behavior. Plugging this an-

satz into NESS equation Lð�Þ ¼ 0, using Lð0Þð�0Þ ¼ 0,
and then equating terms with the same order in �,

gets us two matrix equations, Lð0Þð�1Þ ¼ �LðzzÞð�0Þ and
Lð0Þð�2Þ ¼ �LðzzÞð�1Þ. A known zeroth-order solution �0

can be used to get inhomogeneous terms in the linear
equations for �1, which can in turn be used to get �2.
The only problem is that the number of linear equations is
exponentially large in the length of the chain n.
Nevertheless, several general remarks can be made be-
cause we know �0 (it contains only �

z
1;n, spin current jk ¼

2ð�x
k�

y
kþ1 � �y

k�
x
kþ1Þ, and their products) and the action of

Lð0Þ and LðzzÞ: the first order term �1 does not contain any
magnetization�z

j or spin current jk; they appear only in the

2nd order term �2. Therefore, to the lowest order in per-
turbation � the current and the magnetization profile do
not change. They are the same as for the ballistic XXmodel
at � ¼ 0. Because the perturbation of a nondegenerate
NESS is nonsingular, fixing n, one can always find a
sufficiently small � such that the perturbative expansion
will converge and the system is ballistic. However, for the
transport in the thermodynamic limit the relevant order of
limits is first fixing� and� and only then sending n ! 1.

This limit is more difficult to treat because higher order
terms, for instance �2, can grow with n faster than the first
order term �1, causing the convergence radius to shrink as
n ! 1. As we will see, this is indeed what happens.
We have found the exact expressions for �1 and �2 for

small n � 7; the coefficients in front of all the terms are
rational functions with a rather large denominators and as
such not very transparent. We therefore do not give their
precise form here but rather focus on their scaling with n in
order to infer the convergence radius of the perturbative
expansion. Because we are interested in the spin transport,
we need to know the behavior of the correction in �2 that
involves �z

j and spin current jk. It turns out that the correc-

tion in the current is the same for all sites while the correc-
tion to the magnetization depends on the position. For the
spin current, the coefficient in front of the term jk=2

n is,
�� 67

404 for n ¼ 4, �� 69 235
513 248 for n ¼ 5, while it is

�� 45 569 624 481
243 264 258 368 for n ¼ 6 and �� 56 317 144 998 719 121 983

117 362 105 703 777 609 136

for n ¼ 7. If one looks at the dependence of these
coefficients on n one notices that it is to a very good
approximation linear. Fitting gives the dependence cðnÞ ¼
0:4286ðn� 2:436Þ, with deviations being possibly expo-
nentially small inn. Similar corrections, all growing linearly
with n are also found for�z

j (the one for�
z
1 is in fact equal to

�2 times the one for the current, for other spins prefactors
are larger). To sum up, the expectation value of the spin
current is to order �2 (and to linear order in �) equal to
hjki � ����20:429ðn� 2:436Þ. Because the 2nd order
correction grows with the system size, the perturbative
expansion holds only for � � 1=

ffiffiffi
n

p
, and therefore breaks

down in the thermodynamic limit. Unfortunately, from our
analytical calculation one therefore cannot decide about the
nature of the spin transport at finite � [22].
For larger � we used time-dependent density renormal-

ization (tDMRG) simulations [14] with � ¼ 0:02 to get
expectations of magnetization and spin current in the
NESS. Results are in Fig. 1. For�< 1 the current saturates
for sufficiently large n, with the saturation current mono-
tonically decreasing with �. The system is therefore bal-
listic. For small �< 0:5 the characteristic nc at which j
converges to a constant value scales as �1=�2, which is
the same as the scaling of the analytical perturbative result.
Even though perturbation theory fails as n ! 1, the scal-
ing �2n ¼ const. apparently carries over beyond the per-
turbative result.
Isotropic.—At the isotropic point the spin current at

fixed driving scales as j� 1=
ffiffiffi
n

p
, nicely seen in tDMRG

data in Fig. 2. The isotropic Heisenberg model at infinite
temperature therefore display anomalous diffusion, with
the diffusion constant diverging asD� ffiffiffi

n
p

. This is the first
observation of an anomalous diffusion in a coherent
(Hamiltonian) quantum system. Furthermore, the magne-
tization profile along the chain has a nice scaling with n
and �. As can be seen in Fig. 2, the dimensionless scaling
function looks to be very close to arcsinx; however,
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FIG. 1 (color online). Expectation value of the spin current on
system size n obtained by tDMRG. After sufficiently large nc the
current converges to a n-independent value, signaling a ballistic
spin transport. For small � this happens at nc � 1=�2, at larger
� the scaling seems to be different.
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deviations seen in the figure seem to be larger than the
finite-size or numerical accuracy effects.

Large �.—Perhaps the most interesting regime is for
�> 1 where numerical calculations point to a diffusive
transport at infinite temperature [14,15]. Because analyti-
cal treatment seems to be hard, we choose to study the case
of large �, where the Hamiltonian is close to the Ising one.
The case of large � can be equivalently reformulated
with the Hamiltonian H ¼ P

n�1
j¼1 �ð�x

j�
x
jþ1 þ �y

j�
y
jþ1Þ þ

�z
j�

z
jþ1, with � ¼ 1=� [23]. The NESS for � ¼ 0 is ex-

ponentially degenerate. It is easy to see that the eigenvector
of a dissipative bath part is Lbath

1 ð1���z
1Þ ¼ 0 at the left

end and Lbath
n ð1þ��z

nÞ ¼ 0 at the last spin. Because of
½�z

j;H�¼0� ¼ 0, any operator of the form ð1���z
1Þ � x �

ð1þ��z
nÞ, with x being an arbitrary combination of 1j

and �z
j, is a zero eigenstate of the Lindblad superoperator,

i.e., the NESS. There are 2n�2 independent states of this
form. Besides these, there are additional NESS states,

namely, those for which Lð�¼0ÞðxÞ ¼ 0 holds and where x
now includes also �x;y

j . This increases the degeneracy even

further. Because of this high degeneracy, perturbation the-
ory is more difficult than for small�. An important thing to
note is that the NESS for such Ising chain can support an
arbitrary magnetization profile, while the spin current is
always zero. The Ising spin chain is therefore a perfect
insulator. Exponentially high degeneracy can now be
understood also as being due to the isolation of the bulk
from the boundaries, so that spins in the bulk ‘‘do not
know’’ about the reservoirs at the boundaries. High degen-
eracy is therefore generic and cannot be removed by a
different choice of Lindblad operators. Perturbation �
breaks this high degeneracy making the NESS nondegen-
erate. The gap between two eigenvalues of the Lindblad
superoperator, with the largest real parts, scales as �2 for
small perturbations. This means that if wewant to calculate
the lowest order corrections in the NESS exactly, we have
to expand it up to order �2. Perturbative expansion can be
for small � written as � ¼ 1

2n ð1þ��0 þ���1 þ
��2�2 þ � � �Þ. The resulting linear equations for unknown

�0, �1, and �2 areLð0Þð�0Þ ¼ 0,Lð0Þð�1Þ þLðxxÞð�0Þ ¼ 0,

and Lð0Þð�2Þ þLðxxÞð�1Þ ¼ 0, where we have split the

superoperator into an unperturbed part Lð0Þ and the per-

turbationLðxxÞð�Þ ¼ i½�;Pj�
x
j�

x
jþ1 þ �y

j�
y
jþ1�. Using the

appropriate ansatz, we have obtained exact solutions for
small n � 9; however, they are again complicated, involv-
ing many terms. We only point out features important for
the spin transport. The first observation is that �0 can
contain only terms that are already present in the NESS
for � ¼ 0. This includes magnetization, but not the spin
current. Therefore, operators �z

j will be present in �0,

while the spin current will be present only in the first order

term �1 (because LðxxÞð�z
jÞ will result in the current). Spin

current is therefore always proportional to � (¼ 1=�),
while the magnetization scales as �0. Writing out the
equation involving the coefficient c=4 in front of the spin
current jk in �1, one gets c=2 ¼ z1 � z2 � ðh1;2z3Þ, where
zk is the coefficient in front of �z

k in �0 and ðh1;2z3Þ is the
coefficient in front of ð�x

1�
x
2 þ �y

1�
y
2Þ�z

3 in �1. Our exact

analytical solutions for small n’s show that the term
ðh1;2z3Þ is always equal to c=2 for n 	 4. Therefore, for
large n one has an exact relation c ¼ z1 � z2. This states
that if the magnetization profile is linear on average, then
the spin current scales as �1=n and the transport is dif-
fusive. Of course, showing that z1 � z2 � 1=n might be no
easier than showing this for the current. Exact solutions
give the expectation value of the current j¼��trðjk�1Þ=2n
as ðn� 1Þ � j=ð2��Þ ¼ 3, 5

2 , 2,
25
12 ,

195
88 ,

225 127
101 088 , for n ¼

3; . . . ; 8. To access the limiting value we have looked at
the convergence of j=�r� ¼ ðn� 1Þðz1 � z2Þ with n. If
the transport is diffusive, this coefficient should converge
to the diffusion constant D. In the Fig. 3 we plot the values
of these exact coefficients, together with numerically ob-
tained ones for n � 24. The scaling seems to be linear in
1=n enabling us to obtain the limiting value of the coeffi-
cient as n ! 1. Using this limit we can predict that the
spin current goes as j≍ �2� 2:95

n þOð��3Þ, resulting in the
diffusion constant [24]

D≍ 2:95=�: (3)
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FIG. 2 (color online). Left frame: the scaling of the spin
current on the system size n for � ¼ 1. The current decays
only as�1=

ffiffiffi
n

p
(solid line), indicating a superdiffusive transport.

Right frame: Scaling of the magnetization profile at � ¼ 1 (two
overlapping dashed curves) is very similar to arcsinx (red solid
curve). For �< 1 the profile is flat (dot-dashed curve).
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FIG. 3 (color online). Finite-size scaling of the diffusion con-
stant for large �. Finite value for n ! 1 indicates diffusion.
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The dependence ofD on � has been discussed in [25]. The
2nd order term �2 (as well as the 3rd) does not contain any
corrections to the current. From the analysis of the solu-
tions for small n it also does not appear that they would
grow with n. The convergence radius of the perturbative
series is therefore finite and does not decrease as n ! 1.

To verify the theoretical prediction for a diffusion con-
stant (3) we have again performed tDMRG simulations for
a range of � as well as n. For each � a diffusive scaling of
the current j� 1=n has been checked and the prefactor,
being the diffusion constant, determined. The results are
plotted in Fig. 4, together with Eq. (3). We can see a perfect
agreement for large �, with the perturbative result (3)
holding up to quite small � [26].

Conclusion.—By using perturbation theory in the limit
of small and large anisotropies � as well as large-scale
numerical simulations we have shown that for �< 1 the
Heisenberg model displays ballistic spin transport. At the
isotropic point transport is anomalous, with the current
scaling as �1=

ffiffiffi
n

p
. This is the first observation of an

anomalous transport in a coherent quantum system and
has strong implications for an unexplained high heat con-
ductivity measured in spin-chain materials [27]. For �> 1
we show that the transport is diffusive and inversely pro-
portional to � for large anisotropies.
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[14] T. Prosen and M. Žnidarič, J. Stat. Mech. (2009) P02035;
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