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We perform state tomography of an itinerant squeezed state of the microwave field prepared by a

Josephson parametric amplifier (JPA). We use a second JPA as a preamplifier to improve the quantum

efficiency of the field quadrature measurement from 2% to 36%� 4%. Without correcting for the

detection inefficiency we observe a minimum quadrature variance which is 68þ9
�7% of the variance of

the vacuum. We reconstruct the state’s density matrix by a maximum likelihood method and infer that the

squeezed state has a minimum variance less than 40% of the vacuum, with uncertainty mostly caused by

calibration systematics.
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Fundamental quantum optics experiments at microwave
frequencies have been recently performed with supercon-
ducting qubits or Rydberg atoms inside high-quality mi-
crowave cavities. Examples include the reconstruction of
the Wigner functions of Fock states from one [1] to a few
photons and coherent superpositions of few photons [2–4].
States such as these, which are manifestly nonclassical
light states, are crucial for quantum-information process-
ing, because they can be used to generate entanglement.
However, in the cited experiments, these states are con-
fined in cavities. Therefore, distributing entanglement to
separate parties, as required in quantum communication
protocols, remains challenging for microwave implemen-
tations. In contrast to the discrete Fock state approach,
continuous variables quantum-information (CVQI) strat-
egy uses another type of nonclassical states, the squeezed
states, which are readily created in itinerant modes. These
states exhibit reduced noise, below the vacuum fluctua-
tions, in one of their quadrature components and amplified
noise in the other one. They are also easily generated at
optical frequencies in the itinerant output modes of para-
metric amplifiers made of optically nonlinear crystals.
At optical frequencies, CVQI has progressed rapidly
from the initial creation of squeezed states [5] and tomo-
graphic reconstruction [6–8] of those states to teleportation
[9,10] and quantum error correction [11,12].

At microwave frequencies, the field is less advanced.
The generation of microwave squeezed states using
the nonlinear electrical response of superconducting
Josephson junctions has been reported [13], with inferred
squeezing down to 10% of vacuum variance [14]. Such
states can be powerful tools for quantum-information
processing and communication because microwaves and
superconducting qubits can mimic useful light-atom inter-
actions, as demonstrated in [15]. Furthermore, these
devices are made of compact and integrable electrical

circuits, with much promise for building complex
quantum-information processors. The lack of an efficient
quadrature measurement (QM) for itinerant modes has
slowed the advancement of CVQI. However, as demon-
strated recently in [16], it is possible with a Josephson
parametric amplifier (JPA) to realize an efficient
single QM.
In this Letter, we report the tomography of an itinerant

squeezed microwave field. We demonstrate that our JPA-
based measurement scheme has a quantum efficiency
20 times greater than a QM employing state-of-art semi-
conductor amplifiers. We infer the quantum state prepared
by maximum likelihood tomography, correcting for ineffi-
ciency in our QM. We discuss the achieved degree of
squeezing, from the perspective of generating entangle-
ment on chip.
Homodyne tomography is a standard experimental tool

to infer the quantum state of a single mode of light. It was
proposed in [17] and pioneered on a squeezed optical field
in [6]. Its principle is depicted in Fig. 1. A homodyne
detection apparatus measures the value of the quadrature
X�, where � is set by adjusting the phase of the local
oscillator. The probability density function prðX�Þ for
measuring a particular value of X� is the marginal
density function of the Wigner function, i.e., prðX�Þ ¼R
dX�þ�=2WðX�; X�þ�=2Þ, as shown in Fig. 1(b). Thus, by

performing measurements of X� on many identical copies
of the state and varying �, the ‘‘hidden’’ quantum object
can be seen from different angles and its state inferred.
Losses and other Gaussian noise sources in the homodyne
detector can be modeled with the insertion of a fictitious
beam splitter of transmissivity �, as shown in Fig. 1(a).
In such a case, the measured prðX�Þ are no longer the
projections of the desired Wigner function W, but of a
smoother distribution which is the convolution of W with
a Gaussian Wigner function [18]. However, methods like
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maximum likelihood quantum state tomography can be
used to deconvolve the effect of inefficiency [19].

At optical frequencies, � � 90% is routinely obtained
using a pair of balanced photodiodes [19]. Such detectors
are not available for microwaves and until recently the best
setup was a chain of phase-insensitive amplifiers followed
by a mixer, or two such chains in parallel [20–22]. In such a
case, noise An greater than 1=2 (the vacuum variance) must
be added to the QM [23]. This noise can be modeled as an
effective efficiency by the relation � ¼ 1=ð1þ 2AnÞ [24],
so the QM efficiency using phase-insensitive amplifiers
is limited to 50%. State-of-the-art microwave ampli-
fiers, high-electron-mobility transistors (HEMTs), have
An � 10–20. In practice, the unavoidable losses present
in a microwave experiment typically result in � � 2%.
However, as demonstrated in [16], inserting a JPA used
as a single quadrature preamplifier before the HEMT in-
creases the experimentally achieved � by a factor of
approximately 20.

To perform a high-quality reconstruction of the Wigner
function of a squeezed microwave state we operate two
JPAs in series, as shown in Fig. 2(b). The first JPA, referred
to as the squeezer (SQ), prepares the squeezed state. The
second JPA, referred to as the preamplifier (AMP), ampli-
fies the quadrature of the squeezed state determined by the
phase difference � between the AMP and the SQ pump
tones. We vary � by applying to the two cavities pump
tones slightly detuned from one another. The SQ stage is
pumped at 7.45 GHz, while the AMP stage is pumped at

100 kHz higher frequency, therefore sweeping � through
2� every 10 �s.
Our implementation of a SQ or an AMP at microwaves,

as shown in Fig. 2(a), requires three elements: (i) a JPA
used in reflection, (ii) a directional coupler, and (iii) a
circulator. As described in [14], the JPAs are nonlinear
resonant cavities built from coplanar waveguides whose
central conductor has been replaced by a series of many
Josephson junctions. The Josephson junctions’ nonlinear-
ity causes the cavity’s phase velocity to be intensity de-
pendent. Therefore, when the cavity is pumped it becomes
a phase-sensitive amplifier for input modes whose frequen-
cies lie within the bandwidth of the JPA centered on the
pump frequency. Such microwave modes incident on the
JPA are reflected and exit the cavity with one quadrature
amplified and the other squeezed, depending on their phase
relative to the pump’s phase. A directional coupler is used
to add the pump tone to the incident signal and remove the
pump tone from the reflected signal. Finally, the incident
and reflected modes are separated into different cables
using a circulator.
Following Fig. 2(b), in the limit of large HEMT power

gain GH, our quantum efficiency can be cast as

� ¼ �

2þ 2AA � �þ ½2AH � ð1� �Þ�=GA�
; (1)

where AA (AH) is the AMP (HEMT) added noise, � (�) is
the fraction of power transmitted by the microwave circui-
try between the SQ and the AMP (the AMP and the
HEMT), and GA is the power gain of the AMP stage.
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FIG. 2 (color). (a) To implement a SQ or AMP at microwaves,
three microwave components are required: (i) a JPA, (ii) a
directional coupler, and (iii) a circulator. Taking port (1) of the
directional coupler as reference, (2) is the weakly coupled port,
(3) the isolated port, and (4) the direct port. Port (2) is used to
pump the JPA. Port (3) is used to apply a cancellation tone
(adjusted with a room temperature attenuator and phase shifter)
that nulls the pump and displaces the output of the JPA back to
the origin of the phase space. (b) Schematic of the experiment. In
this figure, all the microwave components and cables are
considered lossless; their imperfections are absorbed into the
experimentally determined total transmissivities �, �, and �.
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FIG. 1 (color). Principle of the experiment. (a) (Left) The
squeezer (SQ, in red) prepares a squeezed state whose quadrature
distributions are measured for different phases � with an effi-
ciency �. (Right) Simulated measurement results for 20 000
realizations of creating the squeezed state and measuring it at
a single �. The top graph shows the measured quadrature value
versus realization number. The bottom plot is a histogram (blue
circles) and Gaussian probability distribution prðX�Þ (red curve)
of this random process. (b) Graphical interpretation. The proba-
bility distribution prðX�Þ is simply the projection of the Wigner
function.
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A detailed description of how we calibrate each of these
parameters is in the supplemental information [25].
Briefly, we inject different amounts of thermal noise into
the amplifier chain while operating each JPA either as an
amplifier (on) or as a noiseless element with unit gain (off).
We then infer the added noise and loss of the elements
by observing the variation in the noise at the output of
the measurement chain. The thermal noise is varied by
connecting the input of the SQ through a switch to either
a ‘‘hot load’’ (50� microwave termination at 4.1 K) or
a ‘‘cold load’’ (at 20 mK). Although the tomography is
only performed with the ‘‘cold load,’’ both are required
for calibration. We obtain AA ¼ 0:25� 0:06, AH ¼
17:3� 0:1, � ¼ 68� 2%, and � ¼ 74� 5%. However,
as the switch is operated at the 4.1 K stage and is slightly
lossy, the state presented at the input of the SQ with
the ‘‘cold load’’ is not pure quantum vacuum, but a low
occupancy thermal state with average photon number
�n ’ 0:15� 0:15. One quadrature of the resulting squeezed
state is then amplified at the AMP stage with sufficient gain
GA ¼ 180 such that the noise in the amplified quadrature
exceeds AH for any �. From Eq. (1), we obtained an overall
quantum efficiency of 36� 4%, which can be compared to
� � 2% without the AMP stage.

In this experiment our uncertainty in � and �n creates
a systematic source of error. We thus perform our
data analysis under three assumptions: (1) high efficiency
(� ¼ 0:40) and high mean photon number ( �n ¼ 0:30),
(2) best estimate for both efficiency (� ¼ 0:36) and
mean photon number ( �n ¼ 0:15), and (3) low efficiency
(� ¼ 0:33) and low mean photon number ( �n ¼ 0).
These three cases give us ‘‘pessimistic,’’ ‘‘best-guess,’’ and
‘‘optimistic’’ analyses, in terms of the purity of the
squeezed state estimated by the tomography. Using a lower
estimate for � and �n as inputs to the tomography algorithm
causes it to return a more pure, more squeezed, and there-
fore a more ‘‘optimistic’’ estimate of the squeezed state.
Associated with each of these three cases, we also have
statistical uncertainty, so the given error bounds cover an
interval that includes both uncertainties around the ‘‘best-
guess’’ estimate. They are reported in the form XþU�L , where

X is the statistical mean using the best-guess calibration
and L and U are, respectively, the lower and upper bounds
of the 1 standard deviation uncertainty in the pessimistic
and optimistic cases.

We must also calibrate the QM to convert the measured
voltage noise into units of noise quanta. In optical homo-
dyne tomography, this is usually done by inserting the
vacuum and observing the quadrature noise. Analo-
gously, we insert the weak thermal state with mean photons
�n (by simply turning the SQ stage off) and measure volt-
ages proportional to quadrature values at many �, as shown
(in blue) in Fig. 3. As expected, this voltage noise is �
independent, with a variance �V2

SQ;off ¼ 3:2� 10�5 mV2.

Under the convention that vacuum has variance 1=2

in unitless quadrature space (or in units of ‘‘quanta’’),
we calibrate this voltage variance to �X2

SQ;off ¼
ð1� �Þ=2þ �ð1=2þ �nÞ ¼ 0:55þ0:07

�0:05 quanta. Therefore,

the desired conversion factor �X2
SQ;off=�V

2
SQ;off ¼

1:71þ0:20
�0:17 � 104 quanta=mV2 is used to rescale the varian-

ces in Fig. 3(c).
In Fig. 3(a), we show QM data of the squeezed state.

With SQ on (red) we observe the characteristic phase
dependent noise for a squeezed state. At the phase for
which the variance is minimum, we show the histogram
of quadrature measurements in Fig. 3(b). The SQ off
histogram is clearly wider than the SQ on histogram,
demonstrating our ability to observe squeezing directly at
the output of our measurement chain. In Fig. 3(c) we plot
the variance of the QM with SQ on and off as a function of
�, expressed in units of quanta, clearly showing squeezing
below the vacuum level. Without correcting for �, we
observe a minimum quadrature variance which is
�X2

SQ;min ¼ 68þ9
�7% of the vacuum variance.

To infer the quantum state created by the squeezer,
correcting for loss during the QM, we used maximum
likelihood quantum state tomography [26]. For each of
the three calibration cases, we performed 35 reconstruc-
tions using independent subsets each containing 10 000
QMs of the total measured data. We estimated statistical
uncertainty from the spread of properties (such as fidelity
or minimum variance) of the set of 35 reconstructions.
The statistical uncertainty was significantly lower than
the systematic uncertainty. In Fig. 4 we show the Wigner
function of the ‘‘best-guess’’ reconstructed state �.
The pure squeezed vacuum state jc i that has the highest

FIG. 3 (color). (a) Density plot of number of occurrences in a
1 �V bin size of the amplified quadrature voltage V� versus
�=2�, with the SQ pump off (top) and on (bottom). (b) In
particular, histograms of V� at the maximum of squeezing:
data (�) and Gaussian fit (continuous lines) for the SQ pump
off (blue) and on (red). (c) Noise variance �X2

� in quanta units on

a log scale versus �=2� for the SQ pump on (red) and off (blue).
The (black) line indicates our estimate of the vacuum noise level
under the ‘‘best-guess’’ calibration.
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fidelity with � has minimum quadrature variance
6:0þ1:4�1:1% of the vacuum variance, and that maximum fidel-
ity is F ¼ hc j�jc i ¼ 0:81þ0:16

�0:17. As explained in the

supplemental information [25], the minimum variance
of � is biased by an amount comparable to our
systematic uncertainty, so we infer the loss corrected
minimum variance �x2SQ;min directly from the observed

minimum variance as �x2SQ;min ¼ ð1=�Þ½�X2
SQ;min�

ð1� �Þ=2�. We find �x2SQ;min ¼ 12þ30
�12% of the vacuum

variance. For comparison, the most highly squeezed opti-
cal state ever made has a variance of only 7% of the
vacuum variance [27].

Producing squeezed states of itinerant modes allows the
generation of distributable entanglement by sending two
copies of a squeezed vacuum state through the two input
ports of a balanced beam splitter. The coherent information
[28] is one useful way to characterize the entanglement
between the two output modes. The asymptotic number of
maximally entangled qubit pairs (ebits) that can be distilled
per copy of the noisy entangled state, by using local
operations and one-way classical communication, is at
least as large as the coherent information [29]. Given two
copies of �, one could make two entangled modes with
2:5þ1:0

�0:4 ebits of coherent information.

In conclusion, we have reconstructed the Wigner func-
tion of an itinerant squeezed microwave field generated at
the output of a Josephson parametric amplifier. Using a
second JPA as a preamplifier has increased the quantum
efficiency of the microwave homodyne detection from
approximately 2% to 36%. The level of squeezing is pri-
marily limited by noise added to the squeezed state by the
JPA. Improving the performance of the JPAs (as both

squeezers and phase-sensitive amplifiers) will require
more detailed investigation of the source of this noise.
We used maximum likelihood quantum state tomography
to deconvolve the QM inefficiency in order to precisely
characterize the state generated. This is an important step
toward generating easily distributable microwave entan-
glement on chip.
The authors acknowledge support from the DARPA/

MTO QuEST program.
Note added.—A different method was recently used to

obtain a similar state reconstruction [30].
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FIG. 4 (color). Mean of 35 reconstructions of the Wigner
function of the state exiting the SQ, inferred by maximum
likelihood under the ‘‘best-guess’’ assumption, in quanta units.
The faint pattern of ripples extending from the origin is caused
by truncation at 30 photons of the density matrix used to
represent the state. The white circle at the origin shows the
full width at half maximum of the vacuum state.
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