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All Nonclassical Correlations Can Be Activated into Distillable Entanglement
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We devise a protocol in which general nonclassical multipartite correlations produce a physically
relevant effect, leading to the creation of bipartite entanglement. In particular, we show that the relative
entropy of quantumness, which measures all nonclassical correlations among subsystems of a quantum
system, is equivalent to and can be operationally interpreted as the minimum distillable entanglement
generated between the system and local ancillae in our protocol. We emphasize the key role of state
mixedness in maximizing nonclassicality: Mixed entangled states can be arbitrarily more nonclassical

than separable and pure entangled states.
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The study of quantum correlations has traditionally
focused on entanglement [1]. It is generally believed that
entanglement is a necessary resource for quantum com-
puters to outperform their classical counterparts. Indeed, it
has been shown that, for the setting of pure-state compu-
tation, the amount of entanglement present must grow with
the system size for an exponential speed-up to occur [2]. In
the context of mixed-state quantum information process-
ing, however, there are computational and communication
feats which are seemingly impossible to achieve with a
classical computer and yet can be attained with a quantum
computer using little or no entanglement (e.g., [3,4]). For
example, the deterministic quantum computation with one
qubit model is believed to estimate the trace of a unitary
matrix exponentially faster than any classical algorithm,
yet with vanishing entanglement during the computation
[5]. A second example is the ability for certain bipartite
quantum systems to contain a large amount of “locked”
classical correlations, which can then be ““unlocked” with
a disproportionately small amount of classical communi-
cation [4]. This task is impossible classically, yet the
quantum states involved are separable, that is, unentangled.
This raises the crucial question about what, if not entan-
glement, is the fundamental resource enabling such feats.

One plausible explanation is associated with the pres-
ence in (generic [6]) quantum states of correlations which
have nonclassical signatures that go beyond entanglement.
Indeed, much attention has recently been devoted to under-
standing and quantifying such correlations for this very
reason [6—-16]. In particular, the separable quantum states
of the systems involved in deterministic quantum compu-
tation with one qubit and the locking protocol have been
shown to possess nonzero amounts of such correlations
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[5,17], as measured by the quantum discord [7]. The latter
strives to capture nonclassical correlations beyond entan-
glement and has recently received operational interpreta-
tions in terms of the quantum state merging protocol [18],
but is unfortunately not a faithful measure [19]. A more
accurate quantification of nonclassical correlations is pro-
vided by the so-called relative entropy of quantumness
(REQ) [8,10-13], defined as the minimum distance, in
terms of relative entropy, between a multipartite quantum
state and the closest strictly classically correlated state (see
Definition 1). Such a measure is faithful [11], symmetric
under permutation of the subsystems, and enables a unified
approach to the quantification of classical, separable, and
entangled correlations [10].

More generally, the role of nonclassical correlations in
quantum information tasks remains unclear. While all en-
tangled states are useful for information processing [20],
whether the same holds for all nonclassically correlated
(separable) states is an open issue. This raises the question:
Is there a setting in which general nonclassical correlations
produce a physically relevant effect that distinguishes them
from purely classical ones?

In this Letter, we answer the question in the affirmative
by demonstrating a protocol which in some sense activates
the nonclassicality present in any multipartite quantum
system, leading to the creation of entanglement. We then
show that the REQ of any system state input to our protocol
is precisely the minimum distillable entanglement gener-
ated between the system and local ancillae via the protocol.
This result renders the REQ both an operational and faith-
ful nonclassicality measure. According to our framework,
all and only the quantumly correlated states are shown to
possess an entanglement potential that makes them readily
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useful for better-than-classical information processing.
Finally, we prove limits on nonclassical correlations for
separable and pure entangled states in any dimension,
while, perhaps surprisingly, these bounds can be exceeded
by mixed entangled states.

Our results apply to general multipartite states, adopting
the following definition of classicality [14].

Definition 1 (strictly classically correlated quantum
state).—Given a set of n d-dimensional qudit systems,
let B; denote an orthonormal basis in C¢ for the ith
system consisting of vectors |B;(k)) for 0 =k =d — 1,
and let B denote an orthonormal basis {|B(k)) =
| B, (ky))| By (ky)) . ..|B,(k,))} for the entire space (C?)®"
formed by taking tensor products of all elements in bases
{B,},. Then, an n-qudit state p is “strictly classically
correlated””—or simply “‘classical”’—if there exists such a
basis B with respect to which p is diagonal. Such states
correspond to the embedding of a multipartite classical
probability distribution into the quantum formalism.

Activation protocol.—We now describe our protocol
for activation of nonclassical correlations. The scheme is
somewhat inspired by the quantum optics setup of
Ref. [21], where one attempts to quantify nonclassicality
of a single field mode (defined there as the state deviation
from a mixture of coherent states) by reducing the problem
to quantifying the two-mode entanglement that can be
generated from the field by using linear optics, auxiliary
classical (coherent) states, and ideal photodetectors.
Similarly, we may expect that mapping the (still not-
well-understood) nonclassicality of multipartite correla-
tions into “more familiar” bipartite entanglement allows
one to employ tools from entanglement theory [1] to
interpret and quantify general nonclassical correlations.

Our activation protocol can be thought of as a game
between an adversary and n players, where the n players
together aim to generate an entangled state between a
system A they control and an ancillary system A’, and
the adversary’s goal is to thwart their efforts by locally
rotating each subsystem of A before the system and ancilla
undergo a predefined interaction. More precisely, the pro-
tocol proceeds as follows (see Fig. 1). We consider n
players P;, each controlling a system-ancilla pair of qudits
(A;, A)). We indicate by A the joint register A, ..., A,
(“system”) and by A’ the joint register A/, ..., Al
(“‘ancilla’). The initial state of the total 2n qudits is a
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FIG. 1 (color online). Activation protocol for n = 3.

tensor product p 4: 40 = p4 ® [0)0|%". For a given p 4, an
adversary is first allowed to apply a local unitary U; of his
choice to each A;. With the adversary’s turn complete, each
player P; now lets their subsystem A; (control qudit)
interact with the corresponding ancillary party A’ (target
qudit) via a CNOT gate Cy Als whose action on the computa-

tional basis states |j)|j/) of C¢® C? is defined as
CIplj"y = Iplj' @ j), with & denoting addition modulo d.
The final state of system plus ancilla is

P azar = Vipa ®10X0I5HVT, (H

withV = CA:A’ . (UA ® HA/), UA = ®l'-':1U,-,andCA;A/ =
®;_Cy,:a;- We ask: At the end of the protocol, have the n

players succeeded in generating bipartite entanglement
across the split A:A’, and, if so, how much entanglement
was created? It is natural to expect that the answer will
depend on the initial state p 4 of the n-qudit system. From a
physical perspective, our aim is to understand precisely
how the nature and amount of correlations between the
parts A; of the system A affects the entanglement that can
be created with an ancilla A’ via the paradigmatic entan-
gling operation—the CNOT; we consider here the worst
case scenario with respect to the choice of the control
bases. We then find the following.

Theorem 1.—The (initial) state p 4 of an n-qudit system
is strictly classically correlated if and only if there exists
some adversarial choice of local unitaries U 4 such that the
(final) state p4.4 output by the activation protocol is
separable across the system-ancilla split.

In other words, the system always becomes (for any
choice of U,) entangled with the ancilla as a result of
the activation protocol, if and only if the input state of the
system is nonclassically correlated. This establishes a
qualitative equivalence between multipartite nonclassical
correlations among components of a quantum system, and
bipartite entanglement between the system and an ancilla,
and settles the issue of the usefulness of nonclassical
correlations in (even separable) quantum states for quan-
tum primitives: Any kind of multipartite nonclassicality
initially present in A is a resource for information process-
ing that can always be activated or mapped into bipartite
entanglement across the A: A’ split. While a direct proof of
this result is quite straightforward (see Appendix A [22]),
in the following we show a more powerful result that
promotes the equivalence between nonclassicality and en-
tanglement to a quantitative relationship.

Quantifying nonclassicality.—Having run the activation
protocol, we proceed to quantify the entanglement gener-
ated in the A:A’ split whenever A is initially in a non-
classically correlated state. The present framework is
general enough to allow us to uncover a full zoology of
nonclassicality measures, as each choice of a different
entanglement monotone [23] we adopt (at the output) leads
in principle to a unique nonclassicality measure (for the
input state), the association stemming exactly from the
activation protocol. More precisely, let E denote some
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entanglement measure of choice and p,4-4 the final
system-ancilla state as in Eq. (1), and define by

Qr(pa) = nl}iAnEAZA’(ﬁAZA’) ()

the minimum entanglement generated across the A: A’ split
over all choices of adversarial local unitaries U 4. We call
Qr(p4) the minimum entanglement potential of p 4 with
respect to E. As a consequence of Theorem 1, Qf is a
measure of nonclassical correlations in the multipartite
state p 4, for every entanglement monotone E.

In fact, the condition Q(p4) = O perfectly character-
izes the set of classically correlated states p4 if E is a
faithful entanglement measure (i.e., if £ vanishes only for
separable states). However, even certain nonfaithful entan-
glement measures can be plugged in to obtain a faithful
measure of nonclassical correlations [19]. The reason is
that the output state p 4.4 has the so-called maximally
correlated form [24] between A and A’; namely, p 440 =
Zkzp,?}lkxll,; ® [kXlly  with  py = (B(k)|p4|B)),
|Bk))4s = U];Ik), and |k) = |k)|k,) ... |k,). In particular,
let us consider the nonfaithful (as it vanishes on so-called
bound entangled states) but physically motivated distilla-
ble entanglement E, [23] as a bipartite entanglement
monotone. We find that the A:A’ distillable entanglement
of pa:ar is equal 0 Ep(pa:ar) = S(pa) = S(Pazar) =
S(p%) — S(p4), where S(o) = —Tr(olog,o) is the
von Neumann entropy of a state o. In the first equality
we used the results of Ref. [25] about distillable entangle-
ment for maximally correlated states—for which it hap-
pens to coincide with the relative entropy of entanglement
[26]. The second equality is justified by the fact that pAB is
the state resulting from local projective measurements
in the local bases B on p4 and is unitarily equivalent
to p4, while p 4.4/ is obtained from p4 via the activation
protocol isometry, Eq. (1). Thus, the minimum distillable
entanglement potential Qp (p,) takes on the form

Op,(pa) = ming[S(p%) — S(p4)], where the minimiza-
tion is over the choice of the bases B. As proven in
Ref. [10], this is an equivalent expression for the REQ,

Qlpa) = min S(py |l o4), 3

classical o 4

where the relative entropy is defined as S(p || o) =
Tr(plog,p — plog,o) and the minimization is over all
strictly classically correlated states o 4. We have thus
proven that the REQ quantifying general nonclassical
correlations between the n subsystems A; of A is exactly
equal to the minimum bipartite distillable entanglement
potential—or, equivalently, to the minimum relative
entropy of entanglement potential—generated between
the system A and the ancillary register A’.

This finding immediately provides a clear-cut operational
interpretation for the REQ, a quantity whose original defi-
nition was purely geometric [Eq. (3)], which thus emerges as
a mathematically sound and physically motivated measure

of nonclassical correlations, quantifying the resource power
of such correlations for (distillable) entanglement genera-
tion. Incidentally, since the REQ is faithful [11], this yields a
proof of Theorem 1.

Other nonclassicality measures can be induced by
different entanglement monotones. Choosing, e.g., the
“negativity” N [27] as an entanglement measure, one
obtains Q r(p4) = (ming ¥, ; ngl)/Z as a quantifier of
nonclassical correlations (see Appendix B [22] for details),
directly related to the off-diagonal coherences of the den-
sity matrix of the system, minimized over all local bases.

Nonclassicality versus mixedness and entanglement.—
Equipped with a faithful and operational measure of
nonclassical correlations, the REQ Q = Qf, , we can
investigate the interplay between nonclassicality, entangle-
ment, and mixedness of general states p 4. For the sake of
simplicity, from now on we restrict to the bipartite case
A; = A, A, = B. We begin with a few simple but general
observations following from the definition of Q.

For pure states p4p = | )], the quantumness Q re-
duces to the von Neumann entropy of entanglement
S(ps) = S(pp) [13] and is thus at most equal to log,d.
On the other hand, for arbitrary mixed p,pz, we have that
O(pap) is at most 2log,d, since from Eq. (3) one has
O(pap) = S(pag ll pa® pg) = S(pa) + S(pp) — S(pag) =
I(pap), where I denotes the mutual information, a measure
of total correlations. From this and the results of Ref. [28],
one realizes that for a separable state a bound Q(pjy}) =
log,d holds. In Appendix C [22], we prove in fact that this
inequality is always sharp for separable states; i.e., the
bound log,d cannot be exactly saturated for separable
nonclassical states, while it is instead trivially reached by
pure maximally entangled states |¢) = d ="/ 345 | )l ).
Almost all separable states thus possess nonclassical cor-
relations [6] but not to a maximal extent (as already
observed in the particular cases of two-qubit [29] and
two-mode Gaussian states [16]). However, with increasing
d — oo we find quite surprisingly that the upper bound
on the REQ of separable states becomes asymptotically
tight, in the sense that separable states exist such that
Q(p’p)/logod — 1. Even more intriguingly, we can
show that the upper bound on general mixed bipartite
states p,p is also asymptotically tight, in the sense that
families of mixed states exist such that in the limit
d — oo, their quantumness converges to the maximum,
Q(pap)/log,d — 2. More precisely, in Appendix D [22]
we prove the following two results by using techniques
from Refs. [30,31]. Let m = [(log,d)*].

Theorem 2.—Define the following random separable
state: o5 = ﬁzﬁ},m,’il»(ilA ® (U,liXilUT)p. with uni-
taries U; drawn independently from the Haar measure.
Then, S(o,p) = logyd + logym, while, on the other
hand, for d sufficiently large and with high probability,
S(o®,) = 2log,d — const, for all B. Hence, Q(0o,5) =
log,d — O(log,log,d).
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Theorem 3.—Define the following random state: For C a
system of dimension m, let p,p = Trel )X |spc, Where
|y € C? ® C? ® C™ is uniformly distributed (with proba-
bility induced by the Haar measure). Then, S(p) < log,m,
while, on the other hand, for d sufficiently large and
with high probability, S(p®) = 2log,d — const, for all B.
Hence, Q(p4p) = 2log,d — O(logylog,d).

These results show that, first, there are separable states
that asymptotically (in d) are as nonclassical as the most
nonclassical pure state (which is the maximally entangled
state); second, mixed entangled states can be twice as
nonclassical as pure entangled states. Both entanglement
and mixedness are required to “‘break the barrier” of log,d,
thus showing that entanglement by itself is not the stron-
gest form of nonclassicality.

Conclusions.—The study of general nonclassical corre-
lations is currently a burgeoning area, but in many ways
such correlations are still not well understood. Our
activation protocol lends new insight into the nature of
these correlations by furnishing them, in full generality,
with a new operational meaning in terms of resources for
entanglement generation. Furthermore, we have reduced
the problem of quantifying nonclassicality to the more
familiar setting of quantifying entanglement, for which a
multitude of tools are already known (see, e.g., [1]). As an
added bonus, we have obtained an alternative operational
interpretation for the relative entropy of quantumness
[8,10]. With respect to the latter, we have demonstrated
that, remarkably, there exist mixed entangled quantum
states whose nonclassical correlations are stronger than
those of pure entangled states. Further investigation on
the nature and the structure of nonclassical correlations,
following the program laid out by this Letter, may trigger
novel developments in quantum technology and shed light
on quantum foundations.
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Note added—After completion of this Letter,
we became aware of some related results by Streltsov,
Kampermann, and Bruss [32], who showed that the quan-
tumness of correlations (as measured, e.g., by the quantum
discord) is also related to the minimum entanglement
generated between the system and apparatus in a partial
measurement process. In light of those results, our findings
can be understood also as dealing with the interplay be-
tween system-apparatus entanglement and nonclassicality
of correlations when realizing local measurements.
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