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We computationally study shear-induced segregation of different-sized particles in vertical chute flow.

We find that, for low solid fractions, large particles segregate toward regions of low shear rates where the

granular temperature (velocity variance) is low. As the solid fraction increases, this trend reverses, and

large particles segregate toward regions of high shear rates and temperatures. We find that this is a global

phenomenon: local segregation trends reverse at high system solid fractions even where local solid

fractions are small. The reversal corresponds to the growth of a single enduring cluster of 30%–60% of the

particles that we propose changes the segregation dynamics.
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Granular mixtures of particles differing in size, density,
or other particle property tend to demix or segregate into
often brilliant patterns. This gives rise to a number of
interesting pattern formation problems in nature [1] and
challenges for powder processing industries [2]. Several
different factors influence segregation behaviors, including
gravity, gradients of shear rates, and granular temperature
(velocity variance) T. Of these, segregation associated with
gravity has been studied the most [3–6], though this is
often accompanied by shear rate gradients. The influence
of shear rate gradients on segregation, particularly for
denser configurations, is much less understood [7].

Shear rate gradients drive gradients in T as well as
gradients in the solid fraction f. In sheared dilute energetic
granular mixtures all particles accumulate in the regions of
low shear rate _� corresponding to regions of low T
and high f, and larger particles do so more efficiently
(e.g., [8–11]), leaving the latter segregated at the regions
of lowest _� and T, as well as highest f. This has been
successfully modeled using kinetic theory [8,11–14] for
sufficiently sparse flows. For moderate solid fractions,
kinetic theory has been shown to overpredict segregation
trends, though still qualitatively reproduce the outcome
[10]. For sufficiently high solid fractions f, there is evi-
dence the segregation trend reverses, that larger particles
segregate to regions of higher shear rates and higher T’s
[15,16], though the evidence was obtained primarily from
systems where simultaneous advection complicated the
outcome. When complex advection combines with even
relatively simple segregation tendencies, the underlying
mechanisms are hard to discern [16].

In this Letter, we investigate segregation associated with
a shear rate gradient as it varies with the system solid
fraction h �fi [17]. We use a vertical chute [Fig. 1(a)] to
isolate the effect of a shear rate gradient on segregation. As
shown for other shear-induced effects [18–20], this geome-
try is ideal for studying the effect of shear rate gradients on
segregation because of its simple geometry but inhomoge-
neous flow structure. We find that while the local solid

fraction �f and other kinematics are nonuniform, the segre-
gation trend varies with the global solid fraction h �fi. For
systems of low h �fi, large particles accumulate within
low- _�, low-T, high-f regions, in quantitative agreement
with predictions using kinetic theory. However, for systems
of high h �fi, the opposite occurs, and our attempt to match
kinetic theory with our results fails dramatically. We find
this change in segregation behavior is associated with the
system structure: as h �fi increases, the system structure
changes from one dominated by binary collisions to
one dominated by one cluster that can involve >60% of
the particles and span the system. As such, the cluster size
may be an order parameter characterizing a phase change
of the system of which the segregation behavior is a
signature.
For our simulations we use the discrete element method

[21] in three dimensions. Particle-particle and particle-wall

FIG. 1 (color online). (a) Sketch of a vertical chute. (b)–(d)
Profiles of kinematic quantities for four mixtures once steady
state is reached (t ¼ 50 s for h �fi ¼ 0:21 and 0.34 and t ¼ 400 s
for h �fi ¼ 0:47 and 0.60). (b) Average streamwise velocity �w,
(c) average granular temperature �T, and (d) average solid frac-
tion of the mixture �f. (e)–(h) Snapshots of two mixtures at
t ¼ 0 s and steady state. (e) h �fi ¼ 0:21 at t ¼ 0 s, (f) h �fi ¼ 0:21
at t ¼ 50 s, (g) h �fi ¼ 0:60 at t ¼ 0 s, and (h) h �fi ¼ 0:60 at
t ¼ 400 s. Two millimeter particles, blue (dark); 3 mm particles,
green (light).
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contact forces are represented using a nonlinear force
model based on Hertzian and Mindlin contact theories
and damping components based on the derivation in
Tsuji, Tanaka, and Ishida [22,23]. The contact forces also
obey the Coulomb law of friction. For the results described
here, we use 50=50 mixtures (by weight) of spherical
particles 2 and 3 mm in diameter with a polydispersity of
10% to impede crystallization. We vary h �fi from one
simulation to the next: h �fi ¼ 0:21–0:60. (The number of
particles in each simulation N varies from 2976 to 8089.)
The boundary conditions we use are those of a vertical
chute of dimensions D ¼ 40 mm, W ¼ 50 mm, and
L ¼ 50 mm in the x, y, and z directions, respectively
[see Fig. 1(a)]. The boundaries are periodic in the z (ver-
tical) and x directions. There is one set of vertical side
walls (in the y direction) that are roughened using
close-packed 2 mm spheres. We denote the velocity and
components as u ¼ uxþ vy þ wz according to directions
noted in Fig. 1(a).

For each simulation, the particles are arranged randomly
in the chute and then released with small random veloc-
ities. After their release, particles collide with one another
and with the vertical walls as they accelerate downward.
Dissipation of energy via interparticle and wall-particle
interactions limits the velocity throughout the cell.
Steady-state velocities are reached within �10 s. The
steady-state kinematic profiles of the granular mixtures
are similar to those in a monosized system measured
in the physical and computational experiments (e.g.,
Refs. [18,19,24]). At the highest solid fractions, the vertical
velocity profile �w resembles a plug flow; at the lower solid
fractions, the velocity is higher and the profile is roughly
parabolic [Fig. 1(b)]. In all cases, the granular temperature
�T is highest near the walls where the shear rate _� ¼ d �w=dy
is the greatest, and generally higher for lower values of h �fi
[Fig. 1(c)]. Regions of low �T and low _� correspond to
regions of high �f [Fig. 1(d)].

We find that segregation in our sparsest simulations
proceeds similarly to segregation reported in other sparse
systems (e.g., [8,11]). All particles move to regions of low
�T, low _�, and high �f in the center of the chute, though large
particles do so more efficiently [see Figs. 1(e) and 1(f)]. In
contrast, in our densest simulations, the larger particles
segregate to the region of high �T and _� near the walls
[see Figs. 1(g) and 1(h)]. To investigate these trends more
quantitatively, we plot the solid fraction profiles �fi of each
component i and the mixture �f for the steady state for three
representative solid fractions—h �fi ¼ 0:21, 0.47, 0.60—in
Fig. 2, row 1. These plots indicate a gradual change: as h �fi
increases, the large particles are increasingly repelled
from the central region of low �T and _� to the regions of
high �T and _� at the boundaries. For the systems with the
highest values of h �fi, the segregation in the center is quite
small, apparently due to the slow dynamics in the center of
the flow.

To investigate the dynamics that give rise to these
steady-state concentrations, we plot the normalized

segregation flux for these systems �fi�~vi¼ �fið �vi� �vÞ=h �wi
where h �wi is the steady-state spatially averaged vertical
velocity. We find that immediately following the release of
the particles (t ¼ 0:5–1 s) the large particles segregate to
the center of the cell for all cases except for the highest
solid fractions investigated (e.g., h �fi ¼ 0:60 in Fig. 2,
row 2). However, when these dynamics are viewed over a
slightly longer period of time (t ¼ 1–10 s), the segregation
flux reversal occurs at moderate h �fi’s (e.g., h �fi ¼ 0:47 in
Fig. 2, row 3). We note this reversal occurs for moderate-
to-high h �fi’s even where the local value of �f is relatively
low. To calculate an average measure of segregation of
each component i toward high- �T, high- _� regions, we com-
pute the average flux of each component toward the walls:
h �fi�~viio � h �fi�~viiy>0 � h �fi�~viiy<0. In Fig. 2, row 4, we

plot average net outward segregation fluxes of large parti-
cles h �fL�~vLio vs normalized time ~t ¼ th �wi=W for the
three systems discussed above. The results illustrate that
the segregation of large particles toward low- �T, low- _�
regions at h �fi ¼ 0:21 occurs at roughly the same (non-
dimensionalized) rate as the segregation of large particles
toward high- �T, high- _� regions at h �fi ¼ 0:60. Further, in
the intermediate system h �fi ¼ 0:47, the crossover from
h �fL�~vLio < 0 to h �fL�~vLio > 0 at ~t � 50 is clearly
indicated.
For physical insight, we compare our data with predic-

tions from kinetic theory with nonequipartition of granular
temperature [11,13], summarized in Ref. [16]. Specifically,
we consider the ‘‘diffusion velocity,’’ �v � �vS � �vL.
Figure 3 contains theoretical predictions of �v vs y based
on local kinematics and simulation results for a few values
of h �fi for t ¼ 0:5–1 s. The results agree qualitatively and
quantitatively for the lowest system solid fractions, e.g.,
h �fi ¼ 0:21 [Fig. 3(a)], though this agreement is not as good
for higher h �fi as low as 0.34 [Fig. 3(b)]. Further, as shown

FIG. 2 (color online). Segregation kinematics of three systems
with h �fi’s as noted for the mixture (M) [green (light gray line)]
and large (L) [red (thin dark gray line)] and small (S) [blue (thick
dark gray line)] particles. Row 1: �fiðyÞ at steady state (SS). Rows
2 and 3: normalized segregation fluxes �fi�~viðyÞ as defined in
text averaged over t ¼ 0:5–1 s (row 2) and 1–10 s (row 3). Row
4: normalized net outward average segregation fluxes for large
particles h �fL�~vLio as a function of normalized time ~t.
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in Figs. 3(c) and 3(d), in the denser systems, h �fi ¼ 0:55
and 0.60, the diffusion velocity predicted from kinetic
theory is in the opposite direction (and significantly greater
in magnitude) from that directly measured from the simu-
lations. We found similar results at later times, though the
qualitative disagreement between theory and simulation
results occurs at lower values of h �fi where the segregation
direction reverses.

Since current formulations of kinetic theory require
collisions to be relatively uncorrelated, we hypothesize
the change in segregation direction and the break between
results and theory have to do with an underlying change in
the structure of the system. To test this hypothesis, we
consider a relatively coarse measure of the system struc-
ture, the size of particle clusters within each system. Here,
we define the size of each cluster Nc by the number of
particles connected via interparticle contacts [Fig. 4(a)].
Figures 4(b) and 4(c) show the probability distribution
function (PDF) of the normalized cluster size Nc=N at
steady state (using data from thousands of time steps) for
different values of h �fi. At lower values of h �fi [e.g., 0.21 in

Fig. 4(b)] the clusters are very small, and the PDFs exhibit
a power law decay. When h �fi increases to 0.37, the slope
decreases and the tail of the PDF becomes more compli-
cated. At higher values of h �fi [Fig. 4(c)], the PDF splits
into two parts: one representing relatively small clusters
that follows a power law, and one representing the size
of the largest cluster Ncm at each time step. In Figs. 4(d)
and 4(f), we plot the time dependence of Ncm=N. For the
lowest value of h �fi ¼ 0:21, there is no unique largest
cluster; many small clusters continuously form and break
apart as mentioned. At h �fi ¼ 0:37, the largest cluster can
reach 20%, though it is not stable and Ncm=N can vary
from �0:01 to 0.2, explaining the complicated tail in
Fig. 4(b). For relatively large h �fi � 0:47 there is a unique
largest cluster that forms relatively quickly and contains a
significant fraction of the particles, though for intermediate
values, e.g., h �fi ¼ 0:47, the initial growth of the largest
cluster is slow [Fig. 4(f)].
We now consider the correspondence between the

growth of Ncm=N and the change in segregation trend
with increasing h �fi. We plot Ncm=N and h �fL�~vLio vs h �fi
in Fig. 5. The results for h �fL�~vLio show the segregation
flux transitions gradually from one where the large parti-
cles segregate toward low- �T, low- _� regions to the reverse,
and that the transition point corresponds at early times to
h �fi � 0:5, and at later times to h �fi � 0:42, as also sug-
gested by Fig. 2. Further, it appears the reversal in segre-
gation trends at early and late times coincides with a
maximum cluster size somewhat greater than �34% of
the total number of particles and shifts to the left for
slightly later times as Ncm grows.
To summarize, we find that the kinematics associated

with shear rate gradients induce segregation for different-
sized particles over a wide range of system solid fractions
h �fi and that the direction of segregation of large particles
relative to small particles reverses at a moderate value of
h �fi. The underlying cause for the reversal appears global;
that is, local segregation trends reverse at higher h �fi even
where local solid fractions are small. The transition is
likely governed by the global structure of the system rather
than a particular value of h �fi. Indeed in the results reported
in this Letter, we find the point of transition changes as the

FIG. 4 (color online). (a) Sketch illustrating 4 clusters with 2
singletons. (b)–(c) Probability distribution function of Nc=N
for (b) h �fi ¼ 0:21 and 0.37, and (c) h �fi ¼ 0:47 and 0.60.
(d)–(e) Time dependence of the maximum cluster size for
(d) h �fi ¼ 0:21 and 0.37, and (e)–(f) h �fi ¼ 0:47 and 0.60.

FIG. 3 (color online). Average segregation velocity �v ¼
�vS � �vL at 0.5–1 s from simulation results and from kinetic
theory [11,13]. Derivation summarized in Ref. [16] for
(a) h �fi ¼ 0:21, (b) h �fi ¼ 0:34, (c) h �fi ¼ 0:55, (d) h �fi ¼ 0:60.

FIG. 5. h �fL�~vLio (� ), and Ncm=N (� ) vs h �fi calculated for
(a) t ¼ 0:5–1 s for h �fL�~vLio and t ¼ 0:75 s for Ncm=N and
(b) t ¼ 1–10 s for h �fL�~vLio and t ¼ 5 s for Ncm=N. The dashed
line indicates h �fL�~vLio ¼ 0, and the dash-dotted line indicates
Ncm=N ¼ 0:34, the value for h �fi ¼ 0:47 at ~t � 50, the segrega-
tion reversal time indicated in Fig. 2, row 4.
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system evolves to steady state. We further expect it to
depend on details such as particle size distribution [25]
as the maximum packing fraction changes. The size of the
clusters we describe is likely related to an interparticle
force correlation length � whose growth was shown by
Lois Lemaı̂tre, and Carlson [26] to correspond with a
transition from sparse to dense flow. They demonstrated
that the transitional value of � depends on the interparticle
restitution coefficient, which we expect will influence our
segregation transition as well. While the current frame-
work of kinetic theory does not correctly predict dynamics
in highly correlated systems, efforts are being made to
extend kinetic theory by explicitly incorporating a corre-
lation length scale into the theory (e.g., Ref. [27]).
Alternatively, a new model for segregation recently pro-
posed by Sarkar and Khakhar for single-sized particles of
different densities [28] shows promise as an alternate
model for segregation in dense granular flows though it
has not yet been applied to different-sized particles.

We conclude by considering a model proposed by Gray
and colleagues for gravity-driven segregation of different-
sized particles of identical material density � down a plane
of inclination � [4]. The model predicts that the segregation
flux in the direction � perpendicular to the average flow
should scale as �c i@�=@� � ðfi=fÞ�g cos�, where c i is
the fraction of the local pressure or normal stress� born by
species i. Essentially, gravity acts to drive all particles
downward, and a nonequipartition of normal stress (where
c i � fi=f) preferentially allows one species to respond
more efficiently to @�=@� than the other and thus segre-
gates the particles. For sheared high h �fi systems where
gravity does not play a role in segregation, we suggest
explicit consideration of the contact stresses �c and kinetic
stresses �k, associated with interparticle contacts
and streaming motion of particles, respectively, as in
Ref. [18]. Then, for a model analogous to that in Ref. [4]
we suggest the segregation flux �fi�~vi � c i@�

c
yy=@yþ

c k
i @�

k
yy=@y so that the negative kinetic stress gradient

plays a role analogous to gravity. We are pursuing this
framework for its potential to model shear-induced segre-
gation in dense flows.
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