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An explicit matrix product ansatz is presented, in the first two orders in the (weak) coupling parameter,

for the nonequilibrium steady state of the homogeneous, nearest neighbor Heisenberg XXZ spin 1=2 chain

driven by Lindblad operators which act only at the edges of the chain. The first order of the density

operator becomes, in the thermodynamic limit, an exact pseudolocal conservation law and yields—via the

Mazur inequality—a rigorous lower bound on the high-temperature spin Drude weight. Such a Mazur

bound is a nonvanishing fractal function of the anisotropy parameter � for j�j< 1.
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Introduction.—Exactly solvable models which exhibit
certain generic physical properties are of paramount im-
portance in theoretical physics, in particular, in condensed
matter and statistical physics where one of the key open
issues is the transport in low dimensional strongly interact-
ing quantum systems. An example par excellence of such
models is an anisotropic Heisenberg XXZ spin 1=2 chain
with a constant nearest neighbor spin interaction which, in
spite of it being Bethe ansatz solvable [1], still offers many
puzzles. For example, at high temperature and vanishing
external magnetic field, it is not clear even if the model
exhibits ballistic or diffusive spin transport [2]. The ques-
tion is of long-lasting experimental interest [3]. Recently,
theoretical study of interacting many-body systems has got
a new impetus by invoking the methods of open quantum
systems and Markovian master equations (MMEs) [4] in
the study of quantum transport far from equilibrium [5,6].

We consider MME in the Lindblad form

d�ðtÞ
dt

¼�i½H;�ðtÞ�þX
k

2Lk�ðtÞLy
k �fLy

k Lk;�ðtÞg (1)

for an open XXZ spin 1=2 chain with the HamiltonianH ¼P
n�1
j¼1 ð2�þ

j �
�
jþ1 þ 2��

j �
þ
jþ1 þ ��z

j�
z
jþ1Þ, where ��

j ¼
1
2 ð�x

j � �y
jÞ, �z

j, j ¼ 1; . . . ; n are Pauli operators on a

tensor product space ðC2Þ�n, with symmetric Lindblad

driving acting on the edges of the chain only, L1;2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2"ð1��Þ

q
��

1 , L3;4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2"ð1��Þ

q
��

n . In this Letter we

construct an exact nonequilibrium steady state (NESS)
solution of this model in the regime of weak coupling
(small ") with the method which seems to be unrelated
to the Bethe ansatz and expresses NESS in the form of a
homogeneous matrix product operator. Such an ansatz has
been employed earlier for exact solutions of classical
many-body stochastic processes [7], however with an im-
portant distinction that here the constructing auxiliary
matrices satisfy cubic instead of quadratic algebraic rela-
tions. Our solution gives birth to a spin-current related
conservation law of an infinite chain, which is almost local

(pseudolocal) in the metallic regime j�j< 1, and hence is
used in a Mazur inequality [8] to bound the spin Drude
weight and prove ballistic transport for certain values of
anisotropy �, while for others we use efficient numerical
computation. We observe that the graph of the Mazur
bound versus � exhibits a fractal structure.
Boundary driven XXZ chain.—NESS �1 ¼ limt!1�ðtÞ

is a fixed point of the flow (1)

� iðadHÞ�1 þ "D̂�1 ¼ 0; (2)

where ðadHÞ� :¼ ½H;�� and

D̂ :¼ 1

2
ð1þ�ÞD̂þ þ 1

2
ð1��ÞD̂�; (3)

with D̂�� :¼ 2��
1 ��

�
1 � f��

1 �
�
1 ; �g þ 2��

n ��
�
n �

f��
n �

�
n ; �g: Note the distinct roles of two bath parameters:

coupling strength " controls the strength of coupling to the
spin baths at the edges of the chain, while driving strength
� controls the nonequilibrium forcing due to unequal
average spin polarizations of the two baths. For example,
in the common derivation of the master equation (1) [4]
weak coupling (small ") is a standard assumption, whereas
the linear response physics would be mimicked by taking
small � at nonsmall " (see, e.g., [9,10]).
Here we address far-from-equilibrium physics within

the regime of weak coupling, so we formally expand
NESS in terms of the coupling parameter ":

�1 ¼ X1
p¼0

ði"Þp�ðpÞ: (4)

Plugging the ansatz (4) into the fixed point condition (2)
results in an operator valued recurrence relation

ðadHÞ�ðpÞ ¼ �D̂�ðp�1Þ; (5)

for the sequence f�ðpÞg, with the initial condition �ð0Þ ¼
2�n1, which is an infinite temperature equilibrium state.
Theorem.—Solutions of (5) in the first two orders read

2n�ð1Þ ¼ �ðZ� ZyÞ; (6)
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2n�ð2Þ ¼ �2

2
ðZ� ZyÞ2 ��

2
½Z; Zy�: (7)

Z is a non-Hermitian matrix product operator

Z ¼ X
ðs1;...;snÞ2fþ;�;0gn

hLjAs1As2 � � �Asn jRi
Yn
j¼1

�
sj
j ; (8)

where �0 � 1 and A0, A� are triple of near-diagonal
matrix operators acting on an auxiliary Hilbert space H
spanned by the orthonormal basis fjLi; jRi; j1i; j2i; . . .g:

A0 ¼ jLihLj þ jRihRj þ X1
r¼1

cosðr�Þjrihrj;

Aþ ¼ jLih1j þ c
X1
r¼1

sin

�
2

�
rþ 1

2

�
�

�
jrihrþ 1j;

A� ¼ j1ihRj � c�1
X1
r¼1

sin

��
2

�
r

2

�
þ 1

�
�

�
jrþ 1ihrj; (9)

where � ¼ arccos� 2 R [ iR and bxc is the largest integer
not larger than x. Constant c 2 C� f0g is arbitrary, but we
adopt a choice c ¼ 1 for j�j � 1 (� 2 R) and c ¼ i for
j�j> 1 (� 2 iR), making the matrices (9) always real.

Proof.—First order. From (3) it follows that D̂�1 ¼
�2ð�z

1 � �z
nÞ, and D̂1 ¼ 2�ð�z

1 � �z
nÞ; hence, the first

order (6) satisfies (5) for p ¼ 1 if

½H;Z� ¼ ��z
1 þ �z

n: (10)

It is important to observe that the ansatz (8) does not
contain any �z

j operator, while [H, Z] can only contain

terms with a single �z
j. Let us write H ¼ P

n�1
j¼1 hj;jþ1

with hj;jþ1 ¼ 2�þ
j �

�
jþ1 þ 2��

j �
þ
jþ1 þ ��z

j�
z
jþ1.

Equation (10) implies that all the terms of [H, Z] where
�z

j appear in the bulk 1< j < n should vanish. Looking

locally at each triple of sites around j this meansX
s1;s2;s32f�;0g

trð�r1
j�1�

z
j�

r3
jþ1½hj�1;j þ hj;jþ1; �

s1
j�1�

s2
j �

s3
jþ1�Þ

	As1As2As3 ¼ 0; for all r1; r3 2 f�; 0g
resulting in eight independent 3-point algebraic relations

½A0;A�A�� ¼ 0; fA0;A
2�g ¼ 2�A�A0A�;

2�fA2
0;A�g � 4A0A�A0 ¼ fA�;A2�g � 2A�A�A�;

2�½A2
0;A�� ¼ ½A�;A2��: (11)

Sufficient additional conditions that the boundary terms of
[H, Z] containing �z

1, �
z
n result in the exact right-hand side

of (10), when Z is of the form (8), can be expressed in
terms of auxiliary boundary vectors hLj; jRi:
hLjA0 ¼ hLj; A0jRi ¼ jRi; hLjAþA�jRi ¼ 1;

hLjA� ¼ hLjAþA�Aþ ¼ hLjAþA2� ¼ 0;

AþjRi ¼ A�AþA�jRi ¼ A2þA�jRi ¼ 0: (12)

Verifying (11) and (12), which imply (10), for the repre-
sentation (9) results in trivial trigonometric identities.
Second order. To prove that (7) satisfies (5) for p ¼ 2 it

is sufficient to show ½H; ½Z; Zy�� ¼ ðD̂þ þ D̂�ÞðZ� ZyÞ
(a) and ½H; ðZ� ZyÞ2� ¼ �ðD̂þ � D̂�ÞðZ� ZyÞ (b).

These relations are implied by ½Z;�z
1 � �z

n� ¼
ðD̂þ þ D̂�ÞZ (a’) and fZ;�z

1 � �z
ng ¼ 1

2 ðD̂þ � D̂�ÞZ
(b’), using the identity ½H;AB� ¼ ½H;A�Bþ A½H;B�,
together with (10), which we have just proven, Hermitian

(anti)symmetrization, and the property ðD̂�ZÞy ¼ D̂�Zy.
As D̂� and (anti)commutator with �z

1 � �z
n only act on

sites 1 and n, and since Z on these sites can only contain

terms with �þ;0
1 and ��;0

n , respectively [see (12)], it

is sufficient to check (a’) and (b’) for all Z 2
f1; �þ

1 ; �
�
n ; �

þ
1 �

�
n g, which reduce to trivial algebra, QED.

The theorem constitutes the rigorous part of this Letter.
Its essential ingredient, namely, the conservation law prop-
erty (10), shall be applied later to the long standing prob-
lem of the spin Drude weight. However, for establishing
the existence of a unique NESS �1 several mathematical
issues still have to be addressed. (i) It is not clear a priori
whether recurrence (5) should have a unique solution.
Suppose uniqueness can be proven up to some order

�ðp�1Þ. Then the solution of a linear Eq. (5) is certainly
nonunique up to the addition of an arbitrary linear combi-
nation of conserved quantities Qk; ½H;Qk� ¼ 0, namely,

~�ðpÞ ¼ �ðpÞ þP
k�kQk. However, as has been checked

explicitly by means of computer algebra for small n � 6
and any �, a unique set of coefficients �k exists such that

D̂~�ðpÞ is in the image of adH, and so the solution of (5) for

the next order �ðpþ1Þ exists. For general n this statement
remains a conjecture. (ii) For (7) to give the complete
second order of NESS, one thus needs to check in addition

that D̂�ð2Þ 2 Im adH. This has been verified explicitly
again only for n � 6, and is conjectured to be true for
any n. (iii) Convergence properties of perturbation series
(4) are unknown, although (4) should be useful even only
as an asymptotic series.
Computation of observables.—We note that for any

finite n, the matrices (9) due to their near-diagonality can
be truncated to the d ¼ 2þ bn=2c dimensional auxiliary
space H d spanned by vectors fjLi; jRi; j1i; . . . ; jbn=2cig
only, reproducing exactly the same matrix product operator
(8). Let us now describe how to compute physical observ-
ables in NESS, hAi ¼ tr�1A, to second order in ". For
example, the spin current from site j to jþ 1, Jj ¼
ið�þ

j �
�
jþ1 � ��

j �
þ
jþ1Þ results directly from (12), hJji ¼

1
2�". More interesting are expectations of local magneti-

zation and spin-spin correlations which are, since Z does
not contain any �z

j, nonvanishing only in the second

order in "; hence, we define Mj :¼ h�z
ji="2 and Cj;k :¼

h�z
j�

z
ki="2. The multiple sums appearing in Mj ¼

2�n�1tr�z
jf�ð1þ�ÞZZy ��ð1��ÞZyZg, such as

h�z
jZZ

yi ¼ P
s1;...;sn

hLjAs1 � � �Asn jRi2tr�z
j

Q
n
k¼1 �

sk
k �

�sk
k ,
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can be evaluated using the transfer matrices (TMs),
~T ¼ P

sð1� 1
2 jsjÞAs �As, ~V ¼ 1

2

P
ssAs �As, where

� � �1, as, e.g. Mj ¼ �hLj � hLj~Tj�1 ~V~Tn�jjRi � jRi,
and similarly for Cj;k and higher correlations. However,

evaluation of such TM products can be drastically simpli-
fied by observing that, since the matrices (9) have only a
single element in each row, the subspace of diagonal
vectors K spanned by j�i � j�i, � 2 fL;R; 1; 2; . . .g is

invariant under the action of TMs ~TK 
 K, ~VK 
 K.
Using identification j�i � j�i ! j�i and defining reduced

TMs T¼ ~TjK, V ¼ ~VjK, reading explicitly

T¼ jLihLj þ jRihRj þ 1

2
ðjLih1j þ j1ihRjÞ

þX1
r¼1

�
cos2ðr�Þjrihrj þ c2

2
sin2

�
2

�
rþ 1

2

�
�

�
jrihrþ 1j

þ c�2

2
sin2

��
2

�
r

2

�
þ 1

�
�

�
jrþ 1ihrj

�
; (13)

V ¼ jLih1j
2

� j1ihRj
2

þ X1
r¼1

�
c2

2
sin2

�
2

�
rþ 1

2

�
�

�
jrihrþ 1j

� c�2

2
sin2

��
2

�
r

2

�
þ 1

�
�

�
jrþ 1ihrj

�
; (14)

we obtain efficient TM product expressions

Mj ¼ �hLjTj�1VTn�jjRi;
Cj;k ¼ �2hLjTj�1VTk�j�1VTn�kjRi; j < k;

(15)

etc., where, for any finite n, the operators (13) and (14) can
again be truncated to d-dimensional matrices over H d.
Note that with our aforementioned choice of constant c the
matrix elements of T are always positive.

Examples.—For the isotropic case � ¼ 1, the TMs T, V
have an effective rank of 3; i.e., they close on H 3, so
the magnetization profile is—interestingly—found explic-
itly to be linear, with constant long-range correlator Mj ¼
�
4 ðnþ 1� 2jÞ,Cj;k ¼ � �2

4 , j � k. Similarly, for any� of

the form � ¼ cosð�l=mÞ, l, m 2 Z, i.e., for rational �, we
find that H mþ1 is invariant under T, V, since the off-
diagonal chains of (13) and (14) are cut; i.e., matrix ele-
ments at position either (mþ 1, mþ 2) or (mþ 2, mþ 1)
vanish, so T, V can be replaced by mþ 1 dimensional
matrices of TjHmþ1

, VjHmþ1
, independently of the system

size n. This allows us to find explicit results for some small
m, say, for � ¼ 1=2 ¼ cos�=3, Mj ¼ �

9 ð4ð5=8Þj�1 �
4ð5=8Þn�j � ð�8Þ1�nðð�5Þj�1 � ð�5Þn�jÞÞ. For j�j> 1,
however, the TMs have always infinite rank, with expo-
nentially growing matrix elements, but (15) allow for
stable and efficient numerical computations, say, of Mj in

only Oðn2Þ steps. In Fig. 1 we plot magnetization profiles,
ranging from flatlike (for j�j< 1) indicative of ballistic
transport to kink-shaped (for j�j> 1) with superexponen-
tial (in n) growth of Mj near the baths j ¼ 1, n indicating

the superexponential shrinking of the perturbative border
for ", and consequently also of the spin current hJji ¼
1
2�", since jh�z

jij ¼ "2jMjj< 1. One has to stress that our

result, being perturbative in ", cannot be used to address
the question of conductivity and spin diffusion; namely, the
conductivity hJji=rjh�z

ji / "�1 does not exist in the weak

coupling limit; i.e., the limits " ! 0 and � ! 0 do not
commute in the thermodynamic limit (TL) n ! 1.
Mazur bound on Drude weight.—Nevertheless, our re-

sult offers very interesting physical application. Namely, as
it is clear from Eq. (10), the operator Z commutes with
the XXZ Hamiltonian, apart from the boundary terms. For
j�j< 1, the matrix product operator (8) makes sense
even for n ¼ 1, where Z becomes a translationally
invariant pseudolocal conservation law in the spirit of
Ref. [11]. Since almost all matrix elements (9) are smaller
than 1 for j�j< 1, it is easy to prove that the coefficients of
expansion of Z in Pauli spin operator clusters decay ex-
ponentially with the length of the cluster.
Reference [12] used the Mazur inequality [8] to estimate

the lower bound on the Drude weight D at high tempera-
ture [13] in terms of some conservation laws Qk:

Dn ¼ lim
t!1

�

2nt

Z t

0
dt0hJðt0ÞJi � �

2n

X
k

ðJ;QkÞ2
ðQk;QkÞ ; (16)

where J :¼ P
n�1
j¼1 Jj, JðtÞ :¼ eiHtJe�iHt, � is the inverse

temperature, and ðA; BÞ :¼ 2�ntrAyB is Hilbert-Schmidt
inner product in the operator space, which defines the

norm kAk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiðA; AÞp
, and conserved quantities Qk are

chosen to be mutually orthogonal ðQk;QlÞ ¼ 	k;lkQkk2.
However, for the XXZ chain all the known local, or ‘‘nor-
malizable,’’ conservation laws [14] are orthogonal to the
spin current ðJ;QkÞ � 0, so the right-hand side of (16)
vanishes. Nevertheless, many numerical computations
(e.g., [15]) suggested that for j�j � 1, D should be posi-
tive, although doubts have been raised recently [2], making
the issue quite controversial. Here we propose to use the
first-order-term in NESS (6), QZ :¼ iðZ� ZyÞ, as the
Hermitian operator, which is conserved in TL, since clearly
limn!1k½H;QZ�k=kQZk ¼ 0, and is relevant to the
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FIG. 1 (color online). Scaled magnetization Mj for strongly
driven � ¼ 1 XXZ chain of length n ¼ 21 at � ¼ 0:5 (a), 1 (b),
1.1 (c). Red dots in (a) and (b) mark analytical results.
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current, since ðJ;QZÞ ¼ ðn� 1Þ=2. Putting Qk ¼ QZ and

performing TL on both sides [16] of (16), we obtain D ¼
limn!1Dn � �

4 DZ where DZ :¼ limn!1ðn�1Þ2=½2nðQZ;

QZÞ�¼ 1
4limn!1n=ðZ;ZÞ. Computing ðZ; ZÞ ¼ 2�ntrZZy

by iterating TM T we get the Mazur bound

DZ ¼ 1

4
lim
n!1

n

hLjTnjRi : (17)

For j�j> 1, we derive DZ ¼ 0 from the fact that matrix
elements of T (13) are all positive and exponentially
growing, which allows for numerically observed spin
diffusion at infinite temperature [9,17]. Consider now
j�j � 1. For a dense set of values of the anisotropy � ¼
cosð�l=mÞ, TM T can be, as discussed earlier, replaced
by a finite mþ 1 dimensional matrix T0 ¼ TjH mþ1

, and

DZ (17) can be evaluated exactly by means of Jordan
decomposition of T0. For example, for � ¼ 1=2 ¼
cos�=3, we find

T0 ¼

1 0 1=2 0

0 1 0 0

0 1=2 1=4 3=8

0 0 3=8 1=4

0
BBBBB@

1
CCCCCA¼U

1 1

1

5=8

�1=8

0
BBBBB@

1
CCCCCAU

�1:

Iterating T0, for large n the off-diagonal element of
the Jordan block starts dominating; hence hLjT0njRi !
nU1;1ðU�1Þ2;2 ¼ 4n=9, so DZð1=2Þ ¼ 9=16. Similarly, we

calculated for all m � 6 [note DZð�Þ ¼ DZð��Þ]:
� DZðcos�Þ � DZðcos�Þ

�=2 1 �=5 5ð5� ffiffiffi
5

p Þ=64
�=3 9/16 2�=5 5ð5þ ffiffiffi

5
p Þ=64

�=4 1/3 �=6 3/20

For � ¼ 1, we have hLjTnjRi / n2, so DZjn / n�1 ! 0.
For all other values of m � 300 we estimated (17) numeri-
cally and plotted the graph of DZð�Þ in Fig. 2, which
clearly exhibits a fractal structure. Numbers in the table
have been compared to a debatable Bethe ansatz result [18]
DBA ¼ 1� sinð2�Þ=ð2�Þ, for � ¼ �=m, which overshoots
the values of the table for 4%, 9%, 13%, and 15% for
m ¼ 3, 4, 5, and 6, respectively.

Conclusion.—We developed an original method to con-
struct explicit matrix product ansatz for the weak coupling
limit of NESS in the XXZ spin chain which is driven out
of equilibrium by Lindblad baths attached at the ends
of the chain. As a byproduct of this result we discovered
a pseudolocal conserved quantity which—unlike previ-
ously known local conservation laws—is not orthogonal
to the spin current in the zero magnetization sector.
Employing this conserved quantity enabled us to rigor-
ously estimate the spin Drude weight and prove the ballis-
tic high-temperature transport in the regime j�j< 1.
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