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Universal fluctuations in phonon transmission and other features of phonon-transmission histograms are

investigated by performing numerical simulations of coherent-phonon transport in isotope-disordered

carbon nanotubes. Interestingly, the phonon-transmission fluctuation in the diffusive regime is universal,

irrespective of the average phonon transmission, the tube chirality, and the concentrations, and masses of

isotopes. We also find that the histogram, which has a Gaussian distribution in the diffusive regime, has

a log-normal distribution in the localization regime.
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Over the past few decades, our understanding of coher-
ent electron transport in mesoscopic and nanoscale systems
has been advancing at a remarkable pace. Various striking
phenomena that originate from the wave nature of coherent
electrons have been discovered including quantized con-
ductance [1,2], universal conductance fluctuation (UCF)
[3], and Anderson localization [4].

On the other hand, coherent-phonon transport has also
been attracting interest recently. Similar to conductance
quantized in multiples of G0 ¼ 2e2=h in ballistic electron
transport in quasi-one-dimensional (Q1D) systems, ther-
mal conductance of ballistic phonon transport in Q1D
systems has been theoretically predicted to be quantized
in multiples of �0 ¼ �2k2BT=3h [5–7]. This has been

confirmed experimentally in a silicon nitride nanowire at
extremely low temperatures (& 800 mK) [8]. In addition
to quantization of thermal conductance, it has been specu-
lated that phenomena originating from the wave nature of
coherent phonons (e.g., phonon localization [9]) are likely
to occur in Q1D systems.

Carbon nanotubes (CNTs) have been frequently used to
investigate coherent-phonon transport in Q1D systems
because of their long coherence length. It was demon-
strated theoretically that single-walled CNTs (SWNTs)
exhibit quantization of thermal conductance even at several
tens of Kelvin [10]. Moreover, it was predicted theoreti-
cally that phonon localization occurs in the high-frequency
regime in isotope-disordered SWNTs with high concen-
trations (* 10%) of 14C [11]. Similar results have also
been obtained using the Boltzmann equation [12] and
simulations of phonon wave packets [13]. In addition,
molecular dynamics simulations on isotope effects on
phonon transport in SWNTs have shown a remarkable
reduction in the thermal conductivity [14,15]. Thermal
conductivity reduction has also been experimentally
observed in thermal-transport measurements of isotope-
disordered boron nitride nanotubes [16].

Previous studies of coherent-phonon transport in
isotope-disordered SWNTs and other disordered materials
have focused only on the thermal conductance or the
average phonon transmission. To the best of our knowl-
edge, no study has attempted to calculate the phonon-
transmission histogram, which conveys much more
information, such as fluctuations in phonon transmission,
than the average phonon transmission. In this Letter, we
report the first theoretical study of the phonon-transmission
histogram of isotope-disordered SWNTs.
To clarify the chirality dependence, differences between

13C and 14C, and the dependence of coherent-phonon
transport on the isotope concentration in isotope-
disordered SWNTs, we performed calculations for two
typical examples: a (5, 5) metallic SWNT with 15.0%
13C and a (8, 0) semiconducting SWNT with 9.4% 14C.
Our simulation is based on the Landauer theory of phonon
transport combined with the nonequilibrium Green’s func-
tion (NEGF) method [17–19]. We used the Brenner bond-
order potential for the interaction between carbon atoms
[20]. Isotope disorder is assumed to exist only in a central
region with a length L. The central region is connected to
semi-infinite pristine SWNT leads that do not contain any
defects or impurities (Fig. 1). According to the Landauer
theory within the linear response with the temperature
difference between hot and cold baths [5], the phonon-

derived thermal conductance can be expressed as �ðTÞ ¼
R1
0

d!
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FIG. 1 (color online). Schematic of an isotope-disordered
SWNT. The central region with a length L and containing
isotopes is connected to semi-infinite pristine SWNT leads.
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T is the average temperature of the hot and cold baths,
fBð!; TÞ is the Bose-Einstein distribution function for a
phonon with a frequency ! in the baths, and h�ð!Þi is the
phonon-transmission function averaged over an ensemble
of samples with different isotope configurations. We
adopted over 200 realizations for each length L at each
frequency !.

In the NEGF method, the phonon-transmission function
�ð!Þ is given by �ð!Þ¼Tr½�Lð!ÞGð!Þ�Rð!ÞGyð!Þ�
in terms of the retarded Green’s functions Gð!Þ¼
½!2M�D��Lð!Þ��Rð!Þ��1 and the level broadening

function due to the left (right) lead �LðRÞð!Þ ¼
i½�LðRÞð!Þ ��y

LðRÞð!Þ� [17–19]. Here, D is a dynamical

matrix derived from the second derivative of the total
energy with respect to the atom coordinates in the scatter-
ing region,M a diagonal matrix with elements correspond-
ing to the masses of the constituent atoms, and �LðRÞð!Þ a
self-energy due to the left (right) lead that can be straight-
forwardly computed by a recursion method. An advantage
of NEGF method is that the phonon transport in
micrometer-length nanotubes can be efficiently computed.
This enables us to calculate the statistical average of the
phonon transmission for nanotubes within the wide range
of tube length with respect to huge number of isotope
configurations. On the other hand, consideration of
many-body interactions such as phonon-phonon scattering
requires much computation time in the NEGF method.

Coherent-phonon transport is classified into three
regions based on a relation among the length L of the
scattering region, the mean free path lMFPð!Þ, and
the localization length �ð!Þ: the ballistic regime for
L� lMFPð!Þ, the diffusive regime for lMFP�L��ð!Þ,
and the localization regime for L � �ð!Þ. Before discus-
sing the phonon-transmission histogram, we first deter-
mine lMFPð!Þ and �ð!Þ for isotope-disordered SWNTs.
We adopt the procedure used in Ref. [11] to estimate these
parameters. Figure 2(a) shows the average phonon trans-
mission h�ð!Þi of the (5, 5) SWNT with 15% 13C for
various L up to 5 �m. In the very low-frequency region,
h�ð!Þi does not decrease and is almost four, even when
isotope impurities are present. Perfect transmission (i.e.,
ballistic transport) is realized because the wavelength of
acoustic phonons in the low-! region is much longer than
the length L. The Landauer expression of thermal conduc-
tance eventually exhibits universal quantization of 4�0 at
low temperatures even in the presence of isotope impurities
(4 corresponds to the number of acoustic phonon modes).

In contrast, h�ð!Þi decreases rapidly in the higher fre-
quency region with increasing L, as shown in Fig. 2(a).
There are two possible mechanisms for the reduction of
h�ð!Þi: diffusive scattering and phonon localization. For
diffusive scattering, h�ð!Þi decreases with L according to
h�ð!Þi ¼ Mð!Þ=ð1þ L=lMFPð!ÞÞ, where Mð!Þ is the
number of phonon modes. On the other hand, for phonon
localization, the phonon-transmission function decays

exponentially with L according to the scaling law
hln�ð!Þi ¼ �L=�ð!Þ. In other words, the localization
length �ð!Þ is defined by the scaling law. To clarify
the mechanism for the phonon-transmission reduction,
the L-dependences of phonon transmission are plotted in
Figs. 2(b) and 2(c) for the two mechanisms, respectively.
As Fig. 2(b) shows, the numerical data of h�ð!Þi at
! ¼ 34 cm�1 and 391 cm�1 are well fitted by the dashed
lines. In particular, the slope of the dashed line for
! ¼ 34 cm�1 is almost zero, implying that the mean
free path lMFP is very long and the phonon transport is
ballistic at this frequency, as has been discussed above. For
! ¼ 391 cm�1, the slope is finite, which indicates that
phonon transport at this frequency is in the diffusive re-
gime. In contrast, at higher frequencies (! ¼ 1071, 1207,
and 1513 cm�1), the calculated values deviate from the
dashed lines with increasing L, although they are well
fitted in the short-L region. This deviation means that
the phonon-transmission reduction for high-! phonons of
a long-L SWNT cannot be explained by the diffusive
scattering mechanism. As shown in Fig. 2(c), the data for
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FIG. 2 (color online). (a) The average phonon transmission
h�ð!Þi of the (5, 5) SWNT with 15% 13C for L ¼ 0:005 �m
(circles), 0:05 �m (rectangles), 0:5 �m (triangles), and 5 �m
(crosses). (b) The L-dependence ofMð!Þ=h�ð!Þi � 1 for several
frequencies, where Mð!Þ is the number of phonon modes of
pristine SWNT. The dashed lines indicate linear fits for estimat-
ing the mean free path. (c) The L dependence of hln�ð!Þi for
several frequencies. The dashed lines represent linear fits to
estimate the localization length. (d) The mean free path (circles)
and the localization length (rectangles) as functions of !.
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! ¼ 1071, 1207, and 1513 cm�1 are well fitted by the
dashed lines in the hln�i plot. We can thus conclude that
the phonon-transmission reduction for high-! phonons in a
long-L SWNT is caused by phonon localization.

The mean free path lMFPð!Þ and the localization
length �ð!Þ can be estimated from the slope of dashed
lines in Figs. 2(b) and 2(c), respectively. The estimated
lMFPð!Þ and �ð!Þ for the (5,5) SWNT with 15% 13C are
presented in Fig. 2(d). This result is in excellent agreement
with the phenomenological Thouless relation, �ð!Þ ¼
ðMð!Þ þ 1ÞlMFPð!Þ=2, similar to electron systems with
time-reversal symmetry [21]. Thus, the three distinct
regimes (ballistic, diffusive, and localization) could be
clarified. We also obtained similar results for the (8,0)
semiconducting SWNT with 9.4% 14C.

In addition, we can see the sharp dips at the van Hove
singularities in Fig. 2(a). This can be easily understood by
Fermi’s golden rule as follows. The probability that an
incident phonon mode scatters into other modes increases
with the density of states (DOS) of the scattered phonon
modes. Because the DOS of optical phonon modes around
the van Hove singularity is very large, the transmission
function shows the sharp dips at the singularities.

We now discuss the phonon-transmission fluctua-

tion, which is defined by a standard deviation ��ð!Þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�ð!Þ2i � h�ð!Þi2p
. Figure 3 shows ��ð!Þ for

(a) 625 nm-long (5,5) SWNT with 15% 13C and
(b) 210 nm-long (8,0) SWNT with 9.4% 14C. The
fluctuation of a physical quantity generally decreases as
its average value increases. However, the fluctuation of
phonon transmission is constant within the frequency
region in the diffusive regime although h�ð!Þi varies de-
pending on ! [see also Fig. 2(a)]. The constant value is
estimated to be ��ð!Þ ¼ 0:35� 0:02 and is indicated
by the dashed lines in Figs. 3(a) and 3(b). Thus, ��ð!Þ
in the diffusive regime is universal and does not depend
on the background phonon transmission, the tube chirality
and length, the isotope concentration, and differences

between 13C and 14C. The universal phonon-transmission
fluctuation is realized only in the diffusive regime
and not in the ballistic and localization regimes.
Interestingly, the value of ��ð!Þ ¼ 0:35� 0:02 is the
same as the value of the UCF for coherent electron
transport in disordered Q1D systems, �G=G0 ¼ 0:365,
within the statistical error. This suggests that the universal
phonon-transmission fluctuation is closely related to the
UCF even though electrons and phonons obey different
quantum statistics. Similar to the UCF, the reason for
the macroscopically observable phonon-transmission
fluctuation can be qualitatively understood as follows:
The fluctuations of phonon-transmission channels cannot
cancel each other because there are very few effective
transmission channels due to isotope scattering. To obtain
a quantitative and complete understanding of the universal
phonon-transmission fluctuation, some sophisticated mi-
croscopic theories are required.
Finally, we discuss the phonon-transmission histogram

Pð�Þ that contains information for every moment of �ð!Þ.
Figures 4(a) and 4(b) show Pð�Þ for several typical fre-
quencies in the diffusive regime of (a) 625 nm-long (5,5)
SWNT with 15% 13C and (b) 210 nm-long (8,0) SWNT
with 9.4% 14C. All the histograms in Figs. 4(a) and 4(b) are
well described by a Gaussian distribution function with the
universal fluctuation ��ð!Þ ¼ 0:35� 0:02. This is similar
to the fact that the electrical conductance histogram in the
diffusive region is expressed by a Gaussian distribution
function with the UCF [21].
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In the localization regime, Pð�Þ becomes an asymmetric
non-Gaussian distribution with a long tail towards large � .
By analogy with the electrical conductance histogram in
the localization regime [22], the asymmetric histogram is
expected to be a lognormal function of � . In fact, Pðln�Þ
can be well described by a Gaussian distribution, as shown
in Figs. 4(c) and 4(d). Unlike the diffusive regime, the
variance Var½ln�� � ð� ln�Þ2 of Pðln�Þ decreases
with increasing hln�i according to Var½ln�� � �2hln�i
as shown in the insets of Figs. 4(c) and 4(d), which is
similar to the situation for electrons [21]. The phonon-
transmission fluctuation in the localization regime is
material independent in the sense that the slope of
Var½ln�� does not depend on the tube geometry, isotope
concentration, or the difference between 13C and 14C.

In summary, we have theoretically investigated
coherent-phonon transport in isotope-disordered carbon
nanotubes in the ballistic, diffusive, and localization re-
gimes by the NEGF method. Table I summarizes the con-
clusions of this study. We have found several universalities
and diversities of phonon-transmission histograms in the
three regimes, which have a lot in common with electron
systems. The conclusions summarized in Table I are ex-
pected to be hold for coherent-phonon transport not only in
isotope-disordered SWNTs but also in many other Q1D
phonon systems. Thus, this study provides guidelines for
gaining a complete understanding of coherent-phonon
transport in mesoscopic and nanoscale disordered systems.
As an interesting issue, we note that it is nontrivial whether
the quantitative coincidence between coherent-phonon and
electron transport remains even when the temperature dif-
ference is large. Also, the influence of many-body interac-
tion, such as phonon-phonon scattering that causes the
phonon decay [23], on the universality of phonon transport
is an important issue to be clarified in the future.
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