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3Dipartimento di Fisica, Università di Trento and INO-CNR BEC Center, I-38050 Povo, Trento, Italy
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We measure the magnetic susceptibility of a Fermi gas with tunable interactions in the low-temperature

limit and compare it to quantum Monte Carlo calculations. Experiment and theory are in excellent

agreement and fully compatible with the Landau theory of Fermi liquids. We show that these measure-

ments shed new light on the nature of the excitations of the normal phase of a strongly interacting

Fermi gas.
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In 1956 Landau developed an elegant description of
interacting Fermi systems at low temperature relying on
the existence of long-lived quasiparticles. While this
Fermi-liquid theory (FLT) describes well Helium 3 and
many solid-state materials above the superfluid tempera-
ture, there exist notable exceptions such as underdoped
cuprates [1], where despite tremendous theoretical and
experimental efforts, the nature of the normal phase is
not yet understood. Similarly to high-critical temperature
superconductors, the properties of the normal phase of
strongly correlated atomic fermionic gases and the nature
of its excitations are still debated. This issue was addressed
recently for spin-balanced gases above the superfluid
transition, through the measurement of equations of state
[2–5], the study of the single-particle excitation spectrum
[6,7], or of spin fluctuations [8]. On the one hand, recent
photoemission spectroscopy experiments near the critical
temperature were interpreted using a pseudogap model [7].
On the other hand, measurement of the temperature depen-
dence of the specific heat displayed a linear behavior
compatible with Fermi liquid’s prediction [2]. All these
experimental probes give access to the properties of the
normal phase of the unpolarized normal phase above the
critical temperature Tc. This limitation can be overcome by
stabilizing the normal state at T < Tc by imposing a spin
population imbalance in the trapped gas [9–11] and ex-
trapolating its properties to zero imbalance. Previous
works focused on the highly polarized limit where minor-
ity atoms behave as impurities: n2 � n1, where ni is the
density for species i [2,12–20]. Here, we interpret the spin
imbalance as the application of an effective magnetic field
to the unpolarized normal gas at very low temperature and
using a combination of Monte Carlo simulations and ex-
perimental results, we extract from the equation of state the
magnetic spin response of the normal phase in the limit
T � Tc. We show that our results are compatible with
a Fermi-liquid description of the normal phase, and we

extract the Fermi-liquid parameters in the universal unitary
limit where scattering length is infinite. The relationship
between these parameters and the properties of low-lying
excitations of the system allow us to quantitatively inter-
pret spectroscopic data from [6,7].
The polarization dependence of the energy E of the

system directly reflects the presence of spin-singlet dimers
in the sample. Indeed, the presence of a gap in the spin
excitation spectrum implies a linear dependence of the
energy E with polarization p ¼ ðN1 � N2Þ=ðN1 þ N2Þ at
low temperature, and hence a zero spin susceptibility. We
have performed quantum Monte Carlo simulations of the
partially polarized Fermi gas at T ¼ 0 in the BEC-BCS
crossover. We make use of the fixed-node diffusion
Monte Carlo method that was employed in earlier studies
of polarized Fermi gases [14,18]. The state of the system is
forced to be in the normal phase by imposing the nodal
surface of a many-body wave function incompatible with
off-diagonal long-range order. A simple way to implement
this requirement is by choosing the trial function of the
Jastrow-Slater form

c TðRÞ ¼ Y
i;i0

fðrii0 ÞDðN1ÞDðN2Þ; (1)

where R ¼ ðr1; . . . ; rNÞ is the spatial configuration vector
of the N particles and D denotes the Slater determinant of
plane waves in a cubic box of size L with periodic bound-
ary conditions. The positive Jastrow correlation term fðrÞ
is determined as described in Ref. [14]: at short distances it
corresponds to the lowest-energy solution of the two-body
problem, while it satisfies the boundary condition on its
derivative f0ðr ¼ L=2Þ ¼ 0.
The results for the canonical equation of state EðN1; N2Þ

are shown in Fig. 1. They are well fitted by the energy
functional

EðpÞ ¼ 3
5NEFð�N þ 5

9
~��1p2 þ . . .Þ; (2)
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holding for a spin polarizable system at low temperature,
where both �N and the dimensionless spin susceptibility ~�
(in units of the susceptibility of an ideal Fermi gas

3n=2EF) depend on 1=kFa, where kF ¼ ð3�2nÞ2=3. The
Monte Carlo method indicates the absence of spin gap, and
thus of preformed molecules in the normal phase for
1=kFa & 0:5. Note that the extracted values of ~� reported
in the inset of Fig. 1 show a rapid drop for positive values
of a when entering the BEC side of the Feshbach reso-
nance. A likely explanation is the binding of fermions into
spin-singlet pairs for some positive value of the interaction
strength 1=kFa. Monte Carlo calculations for values of
1=kFa � 0:7 show that EðpÞ is indeed linear rather than
quadratic in p, indicating the emergence of a gap.
However, pairing fluctuations play a major role for such
values of the coupling and the nodal surface of the Jastrow-
Slater state (see the supplemental material [21]) is no
longer sufficient to enforce the normal phase. This behav-
ior is reminiscent of the pairing transition investigated in
the framework of BCS theory [22], as well as in the normal
phase of the attractive Hubbard model, extrapolated to a
temperature range below the superfluid transition [23,24],
while in our work the extrapolation is made towards a
small spin imbalance.

We now compare these simulations with the grand-
canonical equation of state (EOS) of a homogeneous sys-
tem obtained experimentally in Refs. [2,12]. We prepare a
deeply degenerate mixture of the two lowest internal states
of 6Li, held in a cylindrically symmetric hybrid optical-
magnetic trap, of radial (axial) frequency !r (!z, respec-
tively). The bias magnetic field B0 is chosen between
822 and 981 G, allowing us to tune the strength of inter-
actions �1< 1=kFa < 0:2. The final atom number is 2 to
10� 104 atoms per spin state, and the gas temperature is

smaller than 0:06TF, as measured from the fully polarized
wings of a trapped gas [25]. From dimensional analysis,
the EOS of a spin-imbalanced Fermi gas can be written as

Pð�1; �2; aÞ ¼ P0ð�Þh
�
� ¼ @ffiffiffiffiffiffiffiffiffiffiffi

2m�
p

a
; b ¼ �1 ��2

�1 þ�2

�
;

where � ¼ ð�1 þ�2Þ=2 is the mean chemical potential
and P0ð�Þ is the pressure of a noninteracting unpolarized
Fermi gas. � is a grand-canonical analog of the interaction
parameter 1=kFa, and b is a dimensionless number pro-
portional to the ‘‘spin-polarizing field’’ �1 ��2.
At all values of the scattering length addressed in this

work, the equation of state exhibits a clear discontinuity of
its derivative at the critical field bcð�Þ (See Fig. 2), indicat-
ing a first-order phase transition from a superfluid state for
b < bc to a normal state for b > bc, where h is linear in b2.
[10,12]. The equation of state of the superfluid phase has
been discussed in a previous work [12] and we focus here
on the properties of the normal phase. We write

hð�; bÞ ¼ hNð�Þð1þ 15
8
~�GCð�Þb2 þOðb4ÞÞ: (3)

hNð�Þ is the grand-canonical equation of state in the nor-
mal state, extrapolated to a spin-symmetric configuration.
~�GCð�Þ is a grand-canonical magnetic susceptibility. For an
ideal two-component Fermi gas, the functions hN and ~�GC

are equal to 1. Fitting our data in the normal phase with (3),
we obtain the parameters hNð�Þ and ~�GCð�Þ in the BEC-
BCS crossover shown in Fig. 3 where we compare their
values to the predictions of the Monte Carlo simulations.
To this end, we fit the dependence with 1=kFa of the
parameters �N and ~� determined by Monte Carlo simula-
tions, and perform a Legendre transform to obtain the
grand-canonical EOS hNð�Þ of the normal phase and mag-
netic susceptibility ~�GCð�Þ measured experimentally. In
the investigated parameter range, the agreement between
theory and experiment is excellent. We also remark that our
value for the susceptibility of the normal phase at unitarity
is about twice larger than the value measured in [8] on a gas
with a 35% condensate fraction, confirming a significant
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FIG. 2 (color online). Thermodynamic function hðbÞmeasured
at different magnetic fields B0 ¼ 871, 834, 822 G. The blue lines
correspond to the superfluid equation of state hSð�Þ measured in
[12]. The red line is a linear fit of the data in the normal phase,
b > bc. The dashed line indicates the superfluid/normal phase
transition (b ¼ bc).

1 kFa

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

p2

E
3N

E
F

5

2 1 0 1
0.0
0.2
0.4
0.6
0.8

FIG. 1 (color online). Canonical equation of state of a two-
component Fermi gas calculated using quantum Monte Carlo
simulation, for 1=kFa ¼ �1:5, �1, �0:6, �0:2, 0, 0.2, 0.4, 0.5
(from top to bottom). The solid lines are fits of the low-
polarization data with Eq. (2). Inset: Extracted values of the
susceptibility ~� as a function of 1=kFa. The dashed red line is
the result of a perturbation expansion valid up to order ðkFaÞ2.
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suppression of the spin susceptibility in the superfluid
phase.

Our findings demonstrate that for 1=kFa & 0:5, the spin
excitations of the system are not gapped in the normal
phase which therefore does not support ‘‘true’’ molecules.
However, a certain class of theories predicts a reminis-
cence of this gap in the form of a dip in the density of states
over a range �� around the Fermi level [26]. �� is often
called the pseudogap, in relationship to some features of
high-critical temperature superconductors. These theories
predict a departure of EðpÞ from its quadratic behavior
when the Fermi levels of the two spin species reach the
edges of the dip,�2 ��1 ’ ��. (see Auxiliary Materials).
The absence of such an anomaly in Fig. 1 and 2, and in the
whole range �1< 1=kFa < 0:5 thus suggests that the dip
is either extremely narrow or very broad: the density of
state remains flat over the range of polarizations and inter-
action strength studied in our work. For instance, at
unitarity this range covers 0< b2 < 3. If a sizeable
dip existed, then its width cannot be smaller than

’ ð�1 þ�2Þ
ffiffiffi
3

p ’ 1:4EF where we have used the unitary
equation of state, � ¼ 0:41EF [12]. Such a large pseudo-
gap is not compatible with the photoemission data of [7]
(See below). Furthermore, we would expect on physical
grounds that �� becomes smaller on the BCS side of the
resonance. This is observed neither in the experimental
data of Fig. 2 nor in the quantum Monte Carlo results
of Fig. 1.

On the contrary, Landau’s theory of Fermi liquids is
fully compatible with our observations. This theory as-
sumes the existence of long-lived fermionic excitations
above the Fermi surface. Combining the measurement of
the low-temperature compressibility � and specific heat Cv

of [2] with the data presented here, we can fully character-
ize the parameters of the theory at the unitary limit. From
the magnetic response of the T ¼ 0 gas, we obtain here its

magnetic susceptibility and another determination of �.
The two determinations of � coincide within 5%, showing
that the two approaches indeed probe the same Fermi
liquid. From this set of thermodynamic quantities we
derive, according to Landau’s Fermi-liquid theory, a com-
plete characterization of the low-lying excitations of the
unitary gas: besides their effective mass m� ¼ 1:13m and
Landau parameters Fs

0 ¼ �0:42, Fs
1 ¼ 0:39 found in [2],

we recover here Fs
0 ¼ �0:40 and obtain the new parameter

Fa
0 ¼ m�=m~�ð0Þ�1 � 1 ¼ 1:1ð1Þ. Note that Fa

0 > 0 corre-

sponds to magnetic correlations which do favor the singlet
configuration.
We can finally test FLTon the single-particle photoemis-

sion spectrum obtained at the unitary limit and at the onset
of superfluidity from Ref. [7]. The experimental signal
�Aðk;!Þ is directly proportional to the spectral function
Aðk;!��Þ averaged over the trap that we estimate using
the following procedure: In the vicinity of the Fermi
surface, the dispersion relation of the Fermi-liquid
quasiparticles reads @!k ¼ �þ @

2ðk2 � k2FÞ=2m� where
m� ¼ 1:13m. Assuming long-lived quasiparticles, we
approximate Aðk;!Þ by �ð!�!kÞ and perform the inte-
gration over the trap to obtain �Aðk;!Þ given by [7]

�Aðk;!Þ ¼ 48k2

�2

Z
d3r

Aðk;!��ðrÞ=@Þ
1þ exp@!��ðrÞ

kBT

; (4)

where �ðrÞ is the local chemical potential at position r. In
order to calculate the integrated spectral function �Aðk;!Þ
of a Fermi liquid, we replace the spectral function by
�ð!�!kÞ, and perform the integration in Eq. (4). kFðrÞ
is calculated from the equation of state of the unitary gas
determined in [2]. The temperature is chosen at the onset of
superfluidity kBT=�

0 ¼ 0:32 [2,27]. In order to make a
direct comparison with the experimental data, we finally
convolve our result with the experimental resolution in !
[7], equal to 0:25EF=@ and results for various values of k
are shown in Fig. 4.
With no free parameter in the theory, FLT well repro-

duces the experimental spectra for �Aðk;!Þ in the region
k < kF, with an excellent agreement in the region 0:3kF �
k � kF close to the most probable Fermi level in the trap
(’ 0:7kF) where FLT is expected to be more accurate.
Interestingly, we observe that the width of the peak at
k=kF ¼ 0:6 is well reproduced by our model meaning
that the broadening of the line is not limited by the lifetime
of the quasiparticles, but rather by trap inhomogeneity and
measurement resolution. Significant deviations between
experiment and FLT appear for k > 1:1kF, far from the
most probable Fermi wave vector. However, in this region
the energy spectrum signal is very broad and weak, corre-
sponding to an incoherent background in the spectral func-
tion. Our Fermi-liquid description thus accounts for the
coherent part of the excitation spectrum from [7].
In conclusion we have shown that the magnetic and

thermal responses of the unitary Fermi gas support a
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FIG. 3 (color online). Fermi-liquid equation of state extrapo-
lated to a spin-symmetric configuration hNð�Þ. The black dots
are the experimental data, and the red line is calculated from the
Monte Carlo data. Inset: Grand-canonical susceptibility ~�GCð�Þ
of a Fermi gas in the BEC-BCS crossover.
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description of the normal phase in terms of Fermi-liquid
theory despite the fact that this system exhibits a high-
critical temperature for superfluidity. This behavior is in
contrast with underdoped cuprate high Tc materials dis-
playing anomalous magnetic susceptibility or pseudogap
physics in the normal phase. Recent quantum oscillation
experiments on cuprates in high magnetic fields, aiming at
studying the incipient normal state (somewhat analogously
to the present work) do suggest long-lived quasiparticles
[28]. The drop of the susceptibility on the BEC side of the
resonance for 1=kFa * 0:5 indicates the appearance of a
spin gap in this regime that deserves further investigations.
Finally, the magnetic susceptibility could be a key observ-
able for characterizing the onset of itinerant ferromagne-
tism in a repulsive Fermi gas [29,30].

We are grateful to G. Bruun, C. Lobo, P. Massignan,
S. Stringari, T. Giamarchi, and R. Combescot for insightful
comments. We thank D. Jin, T. Drake, and J. Gaebler for
providing us experimental data on radio-frequency spec-
troscopy. We acknowledge support from ESF (FerMix),
ANR FABIOLA, Région Ile de France (IFRAF), ERC
Ferlodim, and IUF. S. P. acknowledges support from the
Swiss National Science Foundation, S. P. and A.G. from
the Army Research Office with funding from the DARPA
OLE program.

*To whom correspondence should be addressed.
Present address: Ludwig-Maximilians Universität,
Schellingstr. 4, 80799 München, Germany.
sylvain.nascimbene@physik.uni-muenchen.de

[1] P. Lee, N. Nagaosa, and X. Wen, Rev. Mod. Phys. 78, 17
(2006).

[2] S. Nascimbène et al., Nature (London) 463, 1057 (2010).
[3] J. Stewart, J. Gaebler, C. Regal, and D. Jin, Phys. Rev.

Lett. 97, 220406 (2006).
[4] L. Luo et al., Phys. Rev. Lett. 98, 80402 (2007).
[5] M. Horikoshi, S. Nakajima, M. Ueda, and T. Mukaiyama,

Science 327, 442 (2010).
[6] J. Gaebler et al., Nature Phys. 6, 569 (2010).

[7] A. Perali et al., Phys. Rev. Lett. 106 060402 (2011).
[8] C. Sanner, E. Su, A. Keshet, W. Huang, and W. Ketterle,

Phys. Rev. Lett. 106 010402 (2011).
[9] G. Partridge, W. Li, R. Kamar, Y. Liao, and R. Hulet,

Science 311, 503 (2006).
[10] M. Zwierlein, A. Schirotzek, C. Schunck, and W. Ketterle,

Science 311, 492 (2006).
[11] S. Nascimbène et al., Phys. Rev. Lett. 103, 170402

(2009).
[12] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon,

Science 328, 729 (2010).
[13] F. Chevy, Phys. Rev. A 74, 063628 (2006).
[14] C. Lobo, A. Recati, S. Giorgini, and S. Stringari, Phys.

Rev. Lett. 97, 200403 (2006).
[15] R. Combescot, A. Recati, C. Lobo, and F. Chevy, Phys.

Rev. Lett. 98, 180402 (2007).
[16] Y. I. Shin, Phys. Rev. A 77, 041603 (2008).
[17] N. Prokof’ev and B. Svistunov, Phys. Rev. B 77, 020408

(2008).
[18] S. Pilati and S. Giorgini, Phys. Rev. Lett. 100, 030401

(2008).
[19] A. Schirotzek, C.-H. Wu, A. Sommer, and M.W.

Zwierlein, Phys. Rev. Lett. 102, 230402 (2009).
[20] C. Mora and F. Chevy, Phys. Rev. Lett. 104, 230402

(2010).
[21] See supplemental material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.106.215303.
[22] R. Combescot, Eur. Phys. J. D 32, 69 (2004).
[23] M. Capone, C. Castellani, and M. Grilli, Phys. Rev. Lett.

88, 126403 (2002).
[24] A. Toschi, P. Barone, M. Capone, and C. Castellani,

New J. Phys. 7, 7 (2005).
[25] Y. Shin, C. Schunck, A. Schirotzek, and W. Ketterle,

Nature (London) 451, 689 (2008).
[26] Q. J. Chen, J. Stajic, S. N. Tan, and K. Levin, Phys. Rep.

412, 1 (2005).
[27] E. Burovski, N. Prokofev, B. Svistunov, and M. Troyer,

Phys. Rev. Lett. 96, 160402 (2006).
[28] L. Taillefer, J. Phys. Condens. Matter 21, 164212

(2009).
[29] G. Jo et al., Science 325, 1521 (2009).
[30] S. Pilati, G. Bertaina, S. Giorgini, and M. Troyer, Phys.

Rev. Lett. 105, 030405 (2010).

k 0.3 kF

3 2 1 0 1 2

A
k,

k 0.6 kF

3 2 1 0 1 2

k 0.9 kF

3 2 1 0 1 2

k 1.2 kF

3 2 1 0 1 2

k 1.5 kF

3 2 1 0 1 2
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