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We present a quantitative finite temperature analysis of a recent experiment with Bose-Fermi mixtures

in optical lattices, in which the dependence of the coherence of bosons on the interspecies interaction was

analyzed. Our theory reproduces the characteristics of this dependence and suggests that intrinsic

temperature effects play an important role in these systems. Namely, under the assumption that the

ramping up of the optical lattice is an isentropic process, adiabatic temperature changes of the mixture

occur that depend on the interaction between bosons and fermions. Matching the entropy of two

regimes—no lattice on the one hand and deep lattices on the other—allows us to compute the temperature

in the lattice and the visibility of the quasimomentum distribution of the bosonic atoms, which we

compare to the experiment.

DOI: 10.1103/PhysRevLett.106.215302 PACS numbers: 67.85.Pq, 37.10.Jk, 71.10.Fd

Ultracold atoms in optical lattices are, due to the avail-
able impressive control over system parameters, ideal
candidates for ‘‘quantum simulators’’ that mimic con-
densed matter systems [1]. We have already seen them
display the transition to a Mott insulator [2], Fermi sur-
faces have been observed [3], and, recently, the finite
temperature phase diagram for bosonic superfluids in an
optical lattice has been obtained experimentally [4].
Multicomponent mixtures, among them mixtures of bo-
sonic and fermionic atoms, offer a variety of additional
quantum phases of matter. Charge-density waves, super-
solids, and exotic Mott-insulator and superfluid phases
have been predicted [5] and we will certainly see experi-
mental signatures of these in the near future. Of course,
temperature plays a prime role for such quantum simula-
tors and its influence needs to be understood or, better yet,
be under control. But even just determining the tempera-
ture in an optical lattice is an extremely difficult task [4,6].
Thermometry methods for such systems without lattices
are however well established. Hence, under the assumption
that the lattice is ramped up adiabatically (which is usually
a good approximation and was also recently confirmed for
bosons in optical lattices [4]), i.e., without changing the
entropy, one may make inferences about the temperature in
the lattice using entropy-matching methods. Not only does
this hold the opportunity for thermometry in the lattice but
also offers the possibility to further cool the atoms [7].

Here, we study interaction-dependent temperature ef-
fects in Bose-Fermi mixtures under the assumption that
the lattice is raised isentropically. We compare our results
to the visibility of the quasimomentum distribution mea-
sured in Ref. [8] for a 87Rb-40K mixture. By matching the
entropy of two very different regimes (with and without
lattice), we are able to take all experimental parameters
(such as the anisotropic trapping potential, the number of
particles, and the lattice parameters) into account, leaving
no free parameters in our theory. We show that these effects

have a significant influence on the coherence of the bosonic
atoms and depend strongly on the interaction between the
two species, in agreement with the experiment. Hence, we
are faced with a situation in which intrinsic adiabatic
temperature effects play a dominant role and, as we argue
below, have already been observed.
More specifically, we calculate the entropy as a function

of the temperature in the absence of the lattice by invoking
the Hartree-Fock-Bogoliubov-Popov mean-field approxi-
mation for the bosons and including the fermions in a self-
consistent mean-field interaction. To describe the mixture
in the lattice, we use the single-band Bose-Fermi-Hubbard
Hamiltonian and calculate the entropy as a function of the
temperature for a deep lattice perturbatively. For both
regimes, we assume that the mixture is in thermal equilib-
rium such that we can assign one temperature to it. This
results in temperature-entropy diagrams as in Fig. 1 and
allows us to obtain the temperature in the lattice Tf as a

function of the initial temperature Ti by matching the
corresponding entropies (see Fig. 2). The resulting adia-
batic heating or cooling of these isentropic processes was
analyzed for purely fermionic [9] and bosonic [7,10] sys-
tems and a Fermi gas of atoms that can pair into molecules
via a Feshbach resonance [11]. For fixed interparticle
interaction, loss of bosonic coherence due to the presence
of fermions was observed experimentally [12,13] and at-
tributed to intrinsic temperature effects in Refs. [12,14,15],
while in Refs. [16,17] different explanations were put
forward. The adiabatic assumption was recently confirmed
experimentally for bosons [4]. These studies show that Tf

can depend strongly on the system parameters, prime
among them the inhomogeneity introduced by the trapping
potential, and hence realistic descriptions should take all of
them into account. To the best of our knowledge, our
analysis is the first to be directly comparable to the experi-
ment over the full range of interspecies interactions and to
fully take the experimental situation into account.
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Starting from the microscopic model of a mixture of
bosonic atoms of massmB and fermionic atoms of massmF

subject to their respective trapping potentials, and interact-
ing via contact interactions parametrized by the s wave
scattering lengths aBB (Bose-Bose) and aBF (Bose-Fermi),
we invoke the Hartree-Fock-Bogoliubov-Popov approxi-
mation [18,19] for the bosons and include the fermions in a
self-consistent mean-field approximation [20]. This yields
a set of coupled equations, which we solve self-
consistently with an iterative numerical scheme (see,
e.g., Ref. [14] for more details).

After convergence, we are in the position to compute the
entropy of the mixture in thermal equilibrium. For the
parameters [21] of the experiment in Ref. [8], we show
the resulting entropy as a function of the temperature in
Fig. 1. We can see that it depends only weakly on the
interaction aBF—in stark contrast to the situation including
the lattice, as we will see below. Furthermore, over the
whole range of interactions, it is higher than the entropy for
a purely bosonic system. Note that this is not the same as
the noninteracting situation due to the fermionic contribu-
tion to the entropy of the mixture.

For sufficiently deep optical lattices, the system may be
described [23] by the single-band Bose-Fermi-Hubbard

Hamiltonian [24], Ĥ ¼ Ĵ þ Ĥ0, Ĵ ¼ �JB
P

hi;jib̂
y
i b̂j �

JF
P

hi;jif̂
y
i f̂j, Ĥ0¼P

i½Un̂iðn̂i�1Þ=2þVn̂im̂i��in̂i�
�im̂i�, where n̂i ¼ b̂yi b̂i, m̂i ¼ f̂yi f̂i, the b̂i (f̂i) are bosonic
(fermionic) annihilation operators, and the site-dependent
chemical potentials account for the trapping potentials and
control the number of particles. This model is obtained
from the microscopic model by expanding the field opera-
tors in theWannier basis and neglecting all bands above the
lowest band [23] and contributions beyond nearest neigh-
bors. The amplitudes JB=F, U, �i, �i, V / aBF are then

obtained from a band-structure calculation for appropriate
lattice parameters [21]. While the influence of higher bands
cannot be completely ruled out and can have an effect
on the bosonic coherence [16,25], we are in a regime
in which their occupation is expected to be small [23].
For a discussion of the validity of the single band approxi-
mation and contact interaction, we refer the reader to
Refs. [16,25,26].

We obtain the entropy as a function of temperature
employing the thermodynamic interaction picture, treating

Ĵ as a perturbation up to first order. For a given temperature
this yields the partition function and the total number of
bosons and fermions as a function of the chemical poten-
tials. Numerically solving hPin̂ii ¼ NB, hPim̂ii ¼ NF

then yields the entropy for a given temperature and particle

numbers up to first order in Ĵ. We consider the full three-
dimensional anisotropic experimental situation.

Figure 1 summarizes the result of this procedure for the
experimental parameters of Ref. [8]. The most prominent
feature of SðTÞ is its strong dependence on the Bose-
Fermi interaction, while we found only a weak depen-
dence without the lattice. For fixed temperature, starting

from a plateau for strong attraction, the entropy increases
until it reaches a maximum around aBF ¼ 0, from which
it decreases with increasing aBF to a plateau for strong
repulsion. It is this behavior that will crucially influence
the temperature Tf in the lattice and hence also the

coherence of the bosonic atoms, which displays the
same strong dependence on the Bose-Fermi interaction
(see below). The plateaus for large jaBFj are easily ex-
plained: For large repulsion, phase separation occurs, and
once this phase is entered, increasing aBF further does not
have any effect. For large attraction on the other hand,
bosons and fermions are forced to occupy the same lattice
sites, and again further increasing jaBFj does not have any
effect. Comparing the entropy of the mixture to the purely
bosonic situation (note that this is not the same as the
noninteracting case, as also for aBF ¼ 0, the fermions
contribute to the total entropy), we see that the former
is always higher than the latter for the considered pa-
rameter regime. As we will see below, while the adiabatic
ramping up of the lattice leads to adiabatic cooling, this
causes the mixture to be less cooled than bosons would be
without fermions.
Having obtained the entropies with, Sf, and without, Si,

lattice, we are now in the position to obtain the temperature
in the lattice, Tf, for a given initial temperature, Ti, by

matching the respective entropies SfðTfÞ ¼ SiðTiÞ. If the
optical lattice is indeed raised adiabatically and the mix-
ture is in thermal equilibrium, this enables us to compute
Tf as a function of Ti, which can be measured, as, without

lattice, thermometry methods are well established. Figure 2
shows the result obtained by matching the entropies in
Fig. 1. As Sf in Fig. 1 already suggests, we find a strong

dependence of the temperature in the lattice on the

FIG. 1 (color online). Entropy as a function of temperature and
Bose-Fermi scattering length aBF (/ V, the Bose-Fermi interac-
tion) with (translucent surface) and without (opaque surface) a
12 recoil energies deep optical lattice. Bold lines at aBF ¼ �400
show the same for a purely bosonic system, for which the
entropies are independent of aBF (upper line, including the
lattice; lower line, without lattice). The mixture consists of
4� 105 87Rb and 3� 105 40K atoms, and parameters [21] are
as in the experiment in Ref. [8].
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Bose-Fermi interaction, most pronounced for high initial
temperatures. The qualitative behavior of Tf is similar to

that of Sf: For fixed Ti starting from a plateau at large

attraction, the temperature decreases with increasing aBF
and reaches a minimum around aBF ¼ 0, from which it
increases with increasing aBF to a plateau at high repul-
sion. We also depict Tf for a purely bosonic system, which

shows that while over most of the parameter regime the
mixture is cooled, the cooling is less than it would be
without fermions. Being equipped with Tf, we now study

the dependence of the bosonic coherence on the Bose-
Fermi interaction.

Letting the atom cloud evolve freely for a time t, the
density of bosons nðpÞ is well approximated by [27,28]

X
i;j

hb̂yi b̂jieipaði�jÞeið1=4�Þðjjj2�jij2Þw
�
p� i

2a�

�
w

�
p� j

2a�

�
;

where � ¼ @t=ð2mBa
2Þ and w is the Fourier transform of

the Wannier function centered at zero. This density is
measured by taking an absorption image of the cloud,
resulting in the column density nðpx; pyÞ ¼

R
dpznðpÞ.

For shallow lattices and low temperatures, i.e., in the
superfluid regime, this density displays a pronounced in-
terference pattern, which vanishes deep in the Mott regime
(ultradeep lattices) and for high temperatures. Hence, the
visibility of this interference pattern,V ¼ nmax�nmin

nmaxþnmin
[29], is

an indicator for the coherence of the 87Rb atoms. We
calculate V for a given temperature and number of parti-

cles by computing the two-point correlations hb̂yi b̂ji in

thermal perturbation theory up to first order in Ĵ. The result
of this computation is shown in Fig. 3 for parameters as in
Refs. [8,21] and for two different temperatures: We depict
V as a function of the temperature in the lattice Tf (right

surface) and as a function of the initial temperature Ti (left

surface). This corresponds to two different scenarios:
(a) where the adiabatic cooling mechanism is omitted
and hence Tf does not depend on the Bose-Fermi interac-

tion and (b) the more realistic scenario in which the final
temperature does depend on aBF through the entropy
matching described above. As Fig. 3 shows, the two sce-
narios result in opposed behaviors ofV as a function of the
interaction strength aBF. For all temperatures and large
jaBFj, the visibility V is higher on the attractive side
than on the repulsive side of the interaction for scenario
(a), while we see the exact opposite for (b).
The inset of Fig. 3 compares our results directly to the

experiment in Ref. [8]. We assume that the initial tempera-
ture for all measurements was approximately the same as
in the purely bosonic situation. We can see that the results
display the same qualitative behavior: Starting at strong
attraction, the visibility decreases to a minimum, from
which it increases with increasing aBF up to a maximum
at around aBF ¼ 0, and finally decreases to a plateau for
strong repulsion. This is in stark contrast to what one finds
without taking intrinsic temperature effects into account
(see right surface in Fig. 3): At the relevant temperatures,
the visibility simply decreases monotonically with increas-
ing interaction strength.
Figure 3 also shows a shift of the theoretical results

relative to the experimental data. All our results are pa-
rametrized by the Bose-Fermi scattering length, which is
tuned in the experiment by addressing the magnetic
Feshbach resonance at around B0 � 546:9 G [30]. Close
to resonance, magnetic field B and scattering length are

related by aBF ¼ abgð1� �B
B�B0

Þ, where the resonance is at
B0, abg is the background scattering length, and �B the

FIG. 3 (color online). Visibility, V , of the time-of-flight dis-
tribution at a lattice depth of 12 recoil energies as a function of
the Bose-Fermi scattering length aBF and initial temperature
without the lattice Ti (left surface, Tf obtained as in Fig. 2) and

temperature in the lattice Tf (right surface). The inset shows the

same at fixed Ti (the bold line on the left surface, chosen such
that the purely bosonic situation matches the experiment [8]) for
the purely bosonic situation (including an uncertainty of 10% in
Ti) and the mixture (including an uncertainty of 15% in Ti).
Circles are measurements from [8]. The mixture consists of
4� 105 87Rb and 3� 105 40K atoms; all parameters are as in
[8]. There are no free parameters in the theory.

FIG. 2 (color online). Temperature of the mixture in the lattice
(obtained by entropy matching from the data in Fig. 1) as a
function of the Bose-Fermi scattering length aBF and the initial
temperature without lattice Ti. The bold line at aBF ¼ 400 shows
the same for a purely bosonic system, for which the final
temperature is independent of aBF.
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width of the resonance. A faithful experimental determi-
nation of all the parameters in this relation is an extremely
difficult endeavour. They depend on external parameters
such as the trapping potential—and, even more so, the tight
‘‘trapping’’ within a lattice site [26]. In particular, the latter
complicates a direct comparison to the experiment: Neither
ab initio calculations for realistic interatomic potentials
nor experimental measurements of the dependence of
aBF on the magnetic field are available for the situation
at hand. In fact, the experimental visibility shown in

Fig. 3 is really a function of the magnetic field, aBF ¼
abgð1� �B

B�B0
Þ with B0 ¼ 546:9 G, �B ¼ �2:9 G, and

abg ¼ �185a0 [22]. This scattering length is a priori not

the same as the one used to model the interatomic contact
potential. It will be an exciting challenge to explore
whether this may explain the discrepancy between theory
and experiment in Fig. 3 and might result in a better
understanding of the dependence of aBF on external po-
tentials. We hope that, due to the pronounced features of
the visibility—in particular the location of the maximum—
the present study can contribute to the work along this
direction.

In conclusion, we have studied intrinsic temperature
effects in Bose-Fermi mixtures taking the full three-
dimensional anisotropic experimental situation into
account. Under the adiabatic assumption, we have deter-
mined the temperature in the lattice as a function of the
temperature before the lattice is ramped up and found a
strong dependence on the interspecies interaction. This
dependence affects the coherence of the bosons and is
displayed in the visibility of the time-of-flight interference
pattern, which we have compared to the experiment in
Ref. [8], finding qualitative agreement. Not including these
temperature effects results in a very different dependence
on the interaction and leads us to conclude that they need to
be incorporated into any realistic description of Bose-
Fermi mixtures in optical lattices.

We gratefully acknowledge fruitful discussions with
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Note added.—After completion of this work, related
results were reported in [31]. By means of generalized
dynamical mean-field theory, the authors come to similar
conclusions, including the discrepancy concerning the
peak in the visibility.
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Röthel and A. Pelster, Eur. Phys. J. B 59, 343 (2007).
[21] Without lattice, the trap frequencies are given by

!B
radial ¼ 33 Hz, !B

axial ¼ 113 Hz, !F
radial ¼ 45 Hz,

!F
axial ¼ 194 Hz. The lattice introduces an additional con-

finement, leading to !B
radial ¼ 29 Hz, !B

axial ¼ 112 Hz,
!F

radial ¼ 34:5 Hz, !F
axial ¼ 192 Hz at 12 recoils [22].

[22] Th. Best (private communication).
[23] At the considered lattice depth, the gap above the lowest

bands is �E � 6:1ER and the interaction energies and
temperatures V=�EF � 0:0004aBF=a0, U=�EB � 0:057,
kB=�EB � 0:0008=nK; i.e., all interaction energies and
temperatures are much smaller than �E. Furthermore,
both Refs. [12,13] report that neither bosons nor fermions
occupied higher bands.

[24] A. Albus, F. Illuminati, and J. Eisert, Phys. Rev. A 68,
023606 (2003).

[25] A. Mering and M. Fleischhauer, [Phys. Rev. A (to be
published)].
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