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The dynamics of Boolean networks (BN) with quenched disorder and thermal noise is studied via the

generating functional method. A general formulation, suitable for BN with any distribution of Boolean

functions, is developed. It provides exact solutions and insight into the evolution of order parameters and

properties of the stationary states, which are inaccessible via existing methodology. We identify cases

where the commonly used annealed approximation is valid and others where it breaks down. Broader links

between BN and general Boolean formulas are highlighted.
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In his seminal work [1] Kauffman introduced a simple
dynamical model of gene-regulatory networks. The state of
each gene was modeled by an on/off variable, interacting
with other genes via a coupling Boolean function which
determines the state of a gene at the next time step. There
are N such genes (sites) in the network and each one is
influenced by exactly k other genes from the same network.
In Kauffman’s approach, the networks are constructed in a
random manner by choosing Boolean functions from the

set of all 22
k
functions of k inputs and by connecting the

inputs of each function to randomly selected genes from
the set 1; . . . ; N; Boolean functions and connections are
fixed for all subsequent time steps (quenched variables).
The evolution of such a system is deterministic, and since
the number of states is finite (2N) the system is driven to a
periodic-orbit attractor.

It was argued [1] that, despite its simplicity, this
model, also known as random Boolean network (RBN)
or Kauffman net, is of relevance to the understanding of
biological systems and has been studied primarily for this
reason [2]. RBN belongs to a larger class of Boolean
networks, the N-k model of N-variable dynamical sys-
tems with a discrete state space and k-variable interac-
tions, that exhibits a rich dynamical behavior [3,4]. The
N-k model is very versatile and has found its use in the
modeling of genetic networks [5], neural networks [6],
social networks [7], and in many other branches of
science [3,4].

For over two decades the annealed approximation [8]
has proved to be a valuable tool in the analysis of large
scale Boolean networks (N ! 1) as it allows one to
predict the time evolution of network activity (proportion
of on/off states) and Hamming distance (the difference
between the states of two networks of identical topology)
order parameters. The latter was used [8] to predict a phase
transition at k ¼ 2 in RBN. The main assumption in this
method is to ignore the fact that both Boolean function
types and random connections in a Boolean network are
quenched variables; it enables one to resample them at
each time step and ignore potential correlations among

input variables, which simplifies the analytical treatment
significantly. It was shown [9,10] that the annealed
approximation indeed gives a correct result for the
Hamming distance order parameter in RBN, but the
broad validity of the annealed approximation to general
networks of this type has remained an open problem [11].
Remarkably, the annealed approximation provides accu-
rate activity and Hamming distance results for many other
Boolean models with quenched disorder but cannot com-
pute correlation functions, used in studying memory
effects, due to the repeated resampling at different time
steps that makes the various quenched systems indistin-
guishable. Furthermore, there are models [12] that have
very strong memory effects in specific regimes, where the
annealed approximation is no longer valid.
In this Letter, we study the dynamics of the N-k model

with quenched disorder and thermal noise using the gen-
erating functional analysis, an established method for
studying physical systems of this type [13]; the analysis
is general and covers a large class of recurrent Boolean
networks and related models. We show that results for the
Hamming distance and network activity obtained via the
quenched and annealed approaches, for the N-kmodel, are
identical. In addition, stationary solutions of the Hamming
distance and two-time autocorrelation function (inacces-
sible via the annealed approximation) coincide, giving in-
sight into the uniform mapping of states within the basin of
attraction onto the stationary states. In the presence of
noise, we show that above some noise level the system is
always ergodic and explore the possibility of a spin-glass
phase [14] below this level. Finally, we show that our
theory can be used to study the dynamics of models with
strong memory effects.
The model considered is an N-variable recurrent

Boolean network with the parallel update rule

Siðtþ 1Þ ¼ �iðSi1ðtÞ; . . . ; SikðtÞÞ; (1)

where SiðtÞ 2 f�1; 1g and �i:f�1; 1gk ! f�1; 1g is a
Boolean function of exactly k inputs. The thermal noise
flips the output of a function with probability p [15].
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The function at site i and time step tþ 1 operates in a
stochastic manner according to the microscopic law

P�i
ðSiðtþ1ÞjSi1ðtÞ; . . . ;SikðtÞÞ/e�Siðtþ1Þ�iðSi1 ðtÞ;...;Sik ðtÞÞ; (2)

where the inverse temperature� ¼ 1=T relates to the noise
parameter p via tanh� ¼ 1� 2p. The function output
Siðtþ 1Þ is completely random or deterministic when
� ! 0 or 1, respectively. Given the state of the network
SðtÞ 2 f�1; 1gN at time t the functions at time tþ 1 are
independent of each other. This suggests that the probabil-
ity of the microscopic path Sð0Þ ! � � � ! SðtmaxÞ is a
product of (2) over sites and time steps. The joint proba-
bility of microscopic states in two systems of identical
topology but subject to different thermal noise or initial
conditions is

P½fSðtÞg;fŜðtÞg�¼PðSð0Þ;Ŝð0ÞÞ

� Ytmax�1

t¼0

PðSðtþ1ÞjSðtÞÞPðŜðtþ1ÞjŜðtÞÞ;

(3)

where PðSðtþ1ÞjSðtÞÞ¼Q
N
i¼1P�i

ðSiðtþ1ÞjSi1ðtÞ;...;SikðtÞÞ.
The quenched disorder in our model arises from the

random sampling of connections and Boolean functions
generated by selecting the ith function and sampling ex-
actly k indices, fi1; . . . ; ikg, uniformly from the set of all
possible indices. Boolean functions f�ig are sampled ran-
domly and independently from a given distribution of k-ary
Boolean functions. To analyze the typical properties of the
system via the generating functional method, one defines

�½c ; ĉ � ¼ he
�i
P
t;i

fc iðtÞSiðtÞþĉ iðtÞŜiðtÞgi; (4)

where h� � �i denotes the average over the joint probability
(3). The generating function (4) is used to compute mo-
ments of (3) by taking partial derivatives with respect to

the generating fields fc iðtÞ; ĉ jðsÞg, e.g., hSiðtÞŜjðsÞi ¼
�limc ;ĉ!0

@2

@c iðtÞ@ĉ jðsÞ
�½c ; ĉ �. We assume that the system

becomes self-averaging for N ! 1 [13] and compute

�½c ; ĉ �, where � � � is the disorder average over the ran-
dom connection between nodes; this gives rise to the
macroscopic observables

mðtÞ ¼ 1

N

XN
i¼1

hSiðtÞi; Cðt; sÞ ¼ 1

N

XN
i¼1

hSiðtÞSiðsÞi

C12ðtÞ ¼ 1

N

XN
i¼1

hSiðtÞŜiðtÞi;
(5)

where mðtÞ is the network activity (or magnetization [16]),
Cðt; sÞ is the correlation between two states of the same
network, and C12ðtÞ the overlap between two copies of the
same network (related to the Hamming distance dðtÞ via
dðtÞ ¼ 1

2 ½1� C12ðtÞ�).

Averaging (4) over the disorder [17] leads to the saddle

point integral �½� � �� ¼ RfdPdP̂geN�½P;P̂�, where

� ¼ i
X
S;Ŝ

P̂ðS; ŜÞPðS; ŜÞ þ log
X
S;Ŝ

PðS; ŜÞe�iP̂ðS;ŜÞ: (6)

For N ! 1 the averaged generating functional is domi-
nated by the extremum of �. Functional variation with

respect to the order parameters PðS; ŜÞ and P̂ðS; ŜÞ pro-
vides the saddle point equation

PðS;ŜÞ¼PðSð0Þ; Ŝð0ÞÞ X
fSj;Ŝjg

Yk
j¼1

½PðSj;ŜjÞ�

�
� Ytmax�1

t¼0

P�ðSðtþ1ÞjS1ðtÞ; . . . ;SkðtÞÞ

�P�ðŜðtþ1ÞjŜ1ðtÞ; . . . ; ŜkðtÞÞ
�
�
: (7)

The physical meaning of (7) relates to the average joint

probability of single-spin trajectories S and Ŝ in the

two systems PðS;ŜÞ¼ limN!1 1
N

P
N
i¼1 h�½S;Si��½Ŝ;Ŝi�i ,

while the conjugate order parameter P̂ðS; ŜÞ is a constant.
Equation (7) is used to compute the macroscopic observ-
ables (5), for both noisy (�<1) and noiseless (� ! 1)
cases, which evolve in time as follows below

mðtþ 1Þ ¼ f�ðmðtÞÞ

¼ tanhð�ÞX
S

Yk
j¼1

�
1þ SjmðtÞ

2

�
h�ðSÞi�; (8)

Cðtþ 1; sþ 1Þ
¼ F�ðmðtÞ;mðsÞ;Cðt; sÞÞ

¼ tanh2ð�ÞX
S;Ŝ

Yk
j¼1

�
1þ SjmðtÞ þ ŜjmðsÞ þ SjŜjCðt; sÞ

4

�

� h�ðSÞ�ðŜÞi�; (9)

C12ðtþ 1Þ ¼ F�ðmðtÞ; m̂ðtÞ; C12ðtÞÞ; (10)

where S ¼ ðS1; . . . ; SkÞ and the magnetization m̂ðtÞ is com-
puted by (8).
Results for the order parameters (8)–(10), in combina-

tion with (7), suggest that the evolution of all many-time
single-site correlation functions is driven by the magne-
tization mðtÞ. A similar scenario was observed in recur-
rent asymmetric neural networks [18], defined on
comparable topology due to similarity in the equations
for mðtÞ and Cðt; sÞ. This is not surprising since the
asymmetric neural network is a special case of the N-k
model when only linear threshold Boolean functions
are used. Furthermore, for the stationary solution
m ¼ f�ðmÞ [m ¼ limt!1mðtÞ], the solutions of q ¼
F�ðm;m; qÞ [here q ¼ limt!1 lim�!1 Cðtþ �; �Þ is the
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Edwards-Anderson order parameter, used in disordered
systems [14] to detect the spin-glass phase where m ¼ 0
and q � 0] and C12 ¼ F�ðm;m;C12Þ are identical. This
identity suggests that q ¼ C12 and thus a single average
Hamming distance 1

2 ð1� qÞ on the attractor [19]; all

points in the basin of attraction uniformly cover the
stationary states.

Annealed model.—Here connectivities and Boolean
functions change at each time step (1), providing identical
results for m and C12 to those of (8) and (10) [11].
However, the annealed correlation function Cðt; sÞ ¼
mðtÞmðsÞ, where t > s, is the solution of (9) only when
networks are constructed from a single function type.

The annealed result [8] for RBN can be easily recovered
from Eqs. (8)–(10) using the property h�ðSÞi� ¼ 0 for all

S 2 f�1; 1gk and h�ðSÞ�ðŜÞi� ¼ 0 8S � Ŝ, where the �
average is taken over all Boolean functions with equal
weight. In this case, the magnetization mðtÞ ¼ 0 for all

t > 0 and q ¼ tanh2ð�Þð1þq
2 Þk, corresponding to the

stationary solution of (9), has one stable solution q � 0
for all finite � and k. For � ! 1 (no noise), a transition is
observed from one stable solution q ¼ 1 for k � 2 to two
solutions q ¼ 1 (unstable) and q � 0 (stable) for k > 2 [8].

Ferromagnetic phase.—The unordered paramagnetic
phase with m ¼ 0 is a fixed point of (8) only whenP

Sh�ðSÞi� ¼ 0. This is a stable and unique solution of
(8) when

tanh�<

�
2k�1=k

k�1

ðk�1Þ=2

 !
;2k�2=ðk�1Þ k�2

ðk�2Þ=2

 !�

�bðkÞ

for k odd and even, respectively. To prove this [17] we
compare f�ðmÞ with f�ðmÞ, where � is any balanced

Boolean function (with an equal number of �1 in
the output) from the set [20] �ðSÞ ¼ sgn½Pk

j¼1 Sj� þ
�½0;Pk

j¼1 Sj��ðSÞ. Thus, the ordered (ferromagnetic)

phase m � 0 is a fixed point of (8) (if at all) only for �
and k values which satisfy tanh�> bðkÞ. Similar results,
for odd k only, have been conjectured using the annealed
approximation and multiplexing techniques [21].

Spin-glass phase.—For limt!1mðtÞ ¼ m, q ¼ 0 is a
fixed point of (9) if and only if hfPS�ðSÞg2i� ¼ 0,
which occurs only for balanced Boolean functions. By
a similar argument to the one used in the previous para-
graph, we show [17] that for m ¼ 0 the point q ¼ 0 is a
unique stable solution of (9) when tanh2�< bðkÞ. The �
averages in Eqs. (8) and (9) can be computed for a
uniform distribution over all balanced Boolean functions

to obtain mðtÞ ¼ 0 for all t > 0, which implies q ¼
tanh2ð�Þ½ð1þq

2 Þkð1þ 1
2k�1

Þ � 1
2k�1

�. The latter has only

one q ¼ 0 trivial solution for any finite � and develops
a second q ¼ 1 solution only for � ! 1. Thus, the
glassy case of m ¼ 0, q � 0 and finite � occurs only

(if at all) when tanh2�> bðkÞ and for nonuniform dis-
tributions over the balanced Boolean functions.
The upper bound bðkÞ computed here for k odd is

identical to the one computed for noisy Boolean formulas
[22]. This is since each site i at time t in our model can be
associated with the output SiðtÞ of a k-ary Boolean formula
of depth t which computes a function of the associated
initial states [a subset of fSið0Þg] [9]. In the presence of
noise, a formula of considerable depth (large t) loses all
input information for tanh�< bðkÞ and odd k [22]. This
suggests that the upper bound bðkÞ, for odd k, is more
general and is valid for transitions at all m values identify-
ing the point where stationary states depend on the initial
states and ergodicity breaks. For k even, such general
threshold is not yet known.
Memory effects.—In model (1) the state of site i at time t

depends on its states at previous times only indirectly. In
the limit of N ! 1 these dependencies become weak and
Eq. (7) factorizes; this enables one to calculate the observ-
ables of interest (8)–(10). However, in a broad family of
models [23,24] the state of a site i at a time tþ 1 depends
directly on its state at time t. An exemplar model with
strong memory effects used to construct a model of cell-
cycle regulatory network (N ¼ 11) of budding yeast [25] is
of the form

Siðtþ 1Þ ¼ sgn½hiðtÞ � 2h� þ SiðtÞ�½hiðtÞ; 2h�; (11)

where hiðtÞ ¼
P

k
j¼1 �ijð1þ SijðtÞÞ and �ij 2 f�1; 1g.

Mean-field theory (N ! 1) was derived [12] using the
annealed approximation in a variant of this model,
where the interactions f�jg were randomly distributed

Pð�j ¼ �1Þ ¼ 1=2. Significant discrepancies between

the theory and simulation results have been pointed out
[12] for integer h values [in this case it is possible that
2h ¼ hiðtÞ], which were attributed to the presence of
strong memory effects. Refinements of the annealed ap-
proximation method improved the results obtained only
slightly [26,27] but break down in most of the parameter
space.
This model (11) can be easily incorporated into our

theoretical framework. The result of the generating
functional analysis (7) for this process (with or without
thermal noise) can be obtained by replacing the ave-
rage h� � �i� by h� � �i� and the probability function

P�ðSðtþ 1ÞjS1ðtÞ; . . . ; SkðtÞÞ by
P�ðSðtþ 1ÞjSðtÞ;S1ðtÞ; . . . ; SkðtÞÞ

¼ e�Sðtþ1Þfsgn½hðtÞ�2h�þSðtÞ�½hðtÞ;2h�g

2 cosh�fsgn½hðtÞ � 2h� þ SðtÞ�½hðtÞ; 2h�g ; (12)

where hðtÞ ¼ P
k
j¼1 �jð1þ SjðtÞÞ.

In the case of h 2 R, the probability function
(12) is independent of SðtÞ and Eqs. (8)–(10) have the
same structure for model (11): the � averages

h�ðSÞi� and h�ðSÞ�ðŜÞi� are replaced by the averages
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hsgn½hðtÞ � 2h�i� and hsgn½hðtÞ � 2h� sgn½ĥðtÞ � 2h�i�,
respectively. The equation for mðtÞ recovers the annealed
approximation result [12] [using the relation bðtÞ ¼
ð1þmðtÞÞ=2]. In Figs. 1(a) and 1(b), we plot our analytical
predictions for the evolution of mðtÞ and Cðtþ tw; twÞ
against the results of Monte Carlo (MC) simulation which
use (11). The correlation functionCðtþ tw; twÞ, in the limit
of t ! 1, tw ! 1, approaches the stationary solution of
the overlap function (10) as predicted [Fig. 1(b)].

The situation is very different when h 2 Z. Then the
magnetization mðtÞ ¼ P

SPðSÞSðtÞ, where PðSÞ is a mar-
ginal of (7) with P� ! P�, is no longer closed as in (8), but

depends on 2t�1 � 1macroscopic observables (all magnet-
izations, all multitime correlations). Thus the number of
macroscopic observables that determine the value of mðtÞ,
or any other function computed from (7), grows exponen-
tially with time. Annealed approximation results [12] for
this model when h 2 Z are only exact up to t < 2 time
steps [the equation for bð1Þ ¼ ð1þmð1ÞÞ=2 in our ap-
proach and in [12] are identical] and deviate significantly
from the exact solution at later times [Fig. 1(c)]. A typical
evolution of the correlation function Cðtþ tw; twÞ in the
system (11) when h 2 Z is shown in Fig. 1(d).

BN are increasingly used for modeling of biological,
social, and other physical systems. The theoretical frame-
work developed here provides a systematic method for
validating results obtained via the annealed approximation
as well as a rigorous and powerful tool for future work in

this area that copes with variability in Boolean functions,
emerging correlations and memory effects.
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FIG. 1 (color online). Evolution of the magnetization [m �
mðtÞ] and correlation [C � Cðtþ tw; twÞ] functions with time t is
governed by noiseless dynamics (11). Theoretical results (lines)
are plotted against the results of MC simulations (symbols) with
N ¼ 105. Each MC data point is averaged over 10 runs. Error
bars are smaller than symbol size. Top: Evolution of m (a) and
C (b) for h 2 R. In (b) we plot C for h ¼ 0:5 and k ¼ 3.
Bottom: Evolution of m (c) and C (d) for h 2 Z. In (d) we
plot C for h ¼ 0 and k ¼ 2.
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