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Accelerating Light Beams along Arbitrary Convex Trajectories
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We demonstrate, theoretically and experimentally, nonbroadening optical beams propagating along any
arbitrarily chosen convex trajectory in space. We present a general method to construct such beams, and
demonstrate it by generating beams following polynomial and exponential trajectories. We find that all
such beams, accelerating along any convex trajectory, display the same universal intensity cross section,
irrespective of their acceleration. The universal features of these beams are explored using catastrophe

theory.
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Wave packets of light propagating along arbitrarily
curved trajectories in space are rapidly gaining importance.
Already in the 1990s "snake beams" were proposed by
Rosen and Yariv [1]. Yet, it was not until 2007 that
Siviloglou and Christodoulides advanced this concept sig-
nificantly further when they introduced ‘‘accelerating Airy
optical beams™ [2]: shape-preserving light beams whose
peak intensity follows a continuous parabolic curve as they
propagate in free space, just like the quantum-mechanical
“Airy wave packet” [3] that inspired their invention.
Optical Airy beams are now becoming of practical impor-
tance. Examples of recent applications range from optical
manipulation of particles in fluids [4] to plasma-channel
generation and filamentation in fluids and air [5].

Notwithstanding the recent progress [4—13] since the
invention of optical Airy beams and parabolic beams, the
propagation of all of these beams remains, as their name
suggests, limited to parabolic trajectories in space. Indeed,
constraining a light beam to be completely propagation
invariant (non-diffracting) yields the Airy beam solution,
which carries infinite power and propagates along a parab-
ola [3,8,9,14]. However, this beam exists only in theory:
physically, light beams carry finite power, hence in reality
they must eventually broaden with propagation. Relaxing
the condition of complete propagation invariance lifts the
constraint on the beam trajectory: finite-energy nonbroad-
ening accelerating beams are not theoretically constrained
to propagate along parabolic trajectories. Nevertheless, the
only finite-power accelerating beams thus far reported
were truncated versions of the infinite-power solution,
which follow a parabolic trajectory with low diffraction-
broadening for finite propagation distances.

Naturally, there is a growing effort to extend the avail-
able types of nondiffracting beams: Recent advancements
include a technique that can shape the intensity cross
section of 3D parabolic beams [9], studies of the propaga-
tion dynamics of parabolic beams in nonlinear materials
[10], introduction of spatiotemporal Airy-Bessel [11] and
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Airy-Airy [12] “light bullets™ exhibiting low diffraction
and dispersion broadening, and generation of Airy beams
in nonlinear materials with specifically engineered quasi-
phase matching conditions [13]. However, families of
beams accelerating along nonparabolic trajectories have
not been introduced as of yet. Generation of accelerating
beams which can follow any desired path in space is likely
to give rise to new applications and add versatility to this
emerging field.

Here, we demonstrate optical beams which accelerate
along any continuous one-dimensional (1D) curve in
space, x = f(z), with the only condition being that the
curve is convex. We present a general method to construct
these beams, and demonstrate, theoretically and experi-
mentally, light beams whose peak intensity accelerates
along the curves x = 7", withn =1.5,2, 3,4, 5, and an “‘ex-
ponential beam” which follows the curve x = b[e* — 1],
with b and k positive constants. We show that all such
beams, accelerating along any convex trajectory, display
the same universal Airy (henceforth denoted Ai) shaped
intensity cross section transverse to the propagation direc-
tion, irrespective of their acceleration. Further, the beams
remain nonbroadening up to several Rayleigh lengths, and
diffract strongly after the acceleration has stopped. The
distance at which diffraction-broadening onsets is derived
from a condition involving the beam trajectory, and the
geometry of the experimental apparatus only. Last, we
explore these light beams from the point of view of catas-
trophe optics [15], showing that all 1D convex accelerating
beams comprise an optical fold catastrophe [15,16]. The
universal Airy-shaped transverse intensity profile is eluci-
dated as a characteristic of the optical fold catastrophe.

Consider the scheme sketched in Fig. 1(a). A plane wave
of unit intensity, traveling in the positive Z direction, is
passed through an infinitesimally thin phase mask, situated
in the plane z = 0, and carrying phase distribution ¢ (x,) =
¢(x, z = 0). Henceforth we denote the x coordinate in the
plane z = 0 as x, [see Figs. 1(a) and 1(b) for the coordinate
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FIG. 1 (color online). Method of construction, and experimen-
tal apparatus for generation and measurement of arbitrarily
accelerating optical beams. (a) Ray trajectories. A plane wave
(red arrows) passes through a phase mask ¢(x,) (green) located at
z = 0. The phase mask is obtained from Egs. (5) and (6), and the
relation x = f(z). Following Eq. (6), the rays of light are straight
lines from the mask, which are tangent to x = f(z). As an
example, two rays are presented in black. The resulting intensity
distribution is propagating along the predesigned trajectory
x = f(z) (blue curve). (b) Experimental apparatus (not to scale).
A broad cw Gaussian beam (red arrows) is incident on a reflective
spatial light modulator (SLM). The SLM (Hamamatsu LCOS-
SLM) modulates the phase in the vertical (x) direction. The beam
reflected from the SLM is deflected by a beam splitter (BS), and
subsequently propagates in free space above an optical rail along
the z direction. A CCD camera slides along the rail and records
the optical intensity in the x-y plane, for several z planes along the
rail. Since the images are invariant in y, we extract a single cross
section along the x direction from each image. Plotting these cross
sections along the z coordinates at which they were obtained, we
construct an intensity cross-section in the x-z plane. Top Inset:
Typical experimentally recorded x-y image at a given position z.
Bottom Inset: Example of such an x-z cross section, whose peak
intensity feature follows a curve of the form x = az’.

system]. The phase mask is finite in the x, direction. In the
paraxial ray approximation, a ray passing through the mask
at x, is deflected at an angle

0 = dp(x)/dx, D

with respect to the 7 axis. In the Fresnel approximation, the
field for any (x, z = 0) is

1 ,
u(x, z) =[ ,___27Tze’*”("’z’x0)dxo, (2)

where i (x, 7, xo) = k(x — x¢)?/2z + ko(xy), and k is the
wave number in air, and the integration is carried out over

the finite mask size. Applying the stationary-phase ap-
proximation [17] to the oscillatory integral in Eq. (2), the
main contribution to u(x, z) comes from the field emanat-
ing from the stationary points on the mask, xi, which fulfill
'(xf) = 0, where “/ hence on denotes partial differen-
tiation with respect to xq. These points fulfill

x = xb + z¢/(x}) = xi + z0. 3)
These are the points on the phase mask which contribute
most to the wave amplitude in Eq. (2). We approximate
in Eq. (2) up to the third order Taylor’s series in x, around
xb, and perform straightforward integration in Eq. (2) to
obtain an approximation,

k2/3 (i) + 1)2
(@"(xh) + 1) ) @

u(x, z) = ZBiAi( 22/3¢///(x6)4/3

The coefficients B; are irrelevant to the arguments below,
and are therefore presented only in the supplemental
material [18].

Our goal is to set the global maximum of the optical
intensity |u(x, z)|?, in any given plane z, on the curve
x = f(z). This can be done by setting the argument of
the Ai function in Eq. (4) to be exactly —1.019 on every
point of the curve x = f(z) [because Ai(y) has its peak at
y = —1.019]. Neglecting a small shift of the position of
the maximum of the beam, we set the argument to zero
instead of —1.019, obtaining a much simpler equation,

. 1
" (xp) + - 0. &)

Solving Eqgs. (3) and (5) simultaneously with the relation
x = f(z), and substituting the resulting phase relation ¢(x)
in Eq. (2), ascertains that u(x, z) has alocal maximum on the
curve x = f(z). But since the field distributes like an Ai
function around this maximum, the maximum is actually a
global maximum of a cross section of u(x, z) in the direction
perpendicular to x = f(z). However, this does not yet en-
sure that such a global maximum exists for all values of
x = f(z). To ensure that such a global maximum exists for
all points of x = f(z), we require that there exists a smooth,
single valued, relation x,(x) for all values of x. This way,
there exist a set of points x, (points on the initial z = 0
plane) that are stationary in the integral of Eq. (2), and the
fields emanating from them interferes constructively to
yield the curve of global maximum intensity x = f(z).
Consequently, dx,/dx must be single valued for all values
of x. We calculate the derivative d¢’(x,)/dx once through
the chain rule using dx,/dx, and a second time by directly
differentiating Eq. (3). Equating the two expressions, de-
noting z = f~'(x) = g(x), and dropping the index i from
xf), (see supplemental material [18] for details), we find

I S af(z)
dg/ox dz

Equation (6) specifies ® = df(z)/dz in Eq. (3), and along
with the relation x = f(z), identifies the trajectory of the
light ray leaving the mask at z = O as a straight line from

. (6)

xo(x) = x
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FIG. 2 (color online). Measured and simulated properties of
arbitrarily accelerating optical beams. (a) Experimental (top) and
simulated (bottom) optical intensity distributions for beams
accelerating along the nonparabolic trajectories x = az’> and
x = b[e** — 1]. The green lines are the best fits of the positions
of maximum intensity of the experimental data, to these trajec-
tories. These lines are redrawn on the simulated intensities,
highlighting the agreement between theory and experiment.
(b) Summary of a set of experiments of the type presented in
(a) for predesigned polynomial trajectories x = a,z" intersecting
at z = 150 cm. The data set for each beam is presented in a
different color. The whole lines are the predesigned trajectories
used for calculating the masks providing the initial field phases.
The “+” marks are the positions of the peaks of the
experimentally-obtained intensity distribution, at each plane z.
The dashed lines are best fits of these data to the predesigned
trajectories, the same as the green lines in (a). The data are
plotted on a logarithmic scale, where the different accelerations
of the beams appear as different linear slopes. (c) The
Ai%-shaped intensity pattern transverse to the propagation axis.
Experimentally obtained cross sections along the x axis for the
intensity distribution following the trajectories x = asz> (blue)
and x = a;7> (green), are compared to an Ai*(x) function (red),
in accordance with Eq. (4). (d) Experimental (whole lines) and
simulated (dashed lines) full width at half maximum (FWHM) of
the main-intensity feature, for beams which accelerate along the
curves x = asz> (blue [dark gray]) and x = b[eX* — 1] (green
[medium gray]). The peak-intensity is nonbroadening, and even
narrows up to ~30 Rayleigh lengths of propagation, after which
the beam abruptly starts to broaden.

(0, xo) which is tangent to f(z). Figure 1(a) presents this
final result schematically, showing the trajectories of two
rays (black arrows) which contribute to the accelerating
intensity distribution (blue line).

We offer an interpretation of our method of construction,
based on optical catastrophe theory [15,16]. According to

Eq. (6), the curve x = f(z) is the envelope of rays tangent
to all members of the ray family leaving the mask, and
therefore a caustic [15]. Since a caustic is a manifold on
which rays focus to a maximum extent, it is not surprising
that the optical intensity |u(x, z)|> has a global maximum
there. The solution to the ray equation [Eq. (6)] is singular
on x = f(z): for any point below the curve x = f(z),
Eq. (6) always has exactly two solutions, corresponding
to two rays that cross this point (for instance, in Fig. 1(a) the
two black rays cross at some point beneath the curve). For a
point which is exactly on the curve, Eq. (6) has only one
solution, which is the ray tangent to the curve at that point.
For a point above the curve, Eq. (6) has no solution at all,
since there are no rays which are tangent to a convex curve
and cross it at the same time. The configuration of critical
points of the potential ¢ in Eq. (2), and equivalently the
number of solutions of Eq. (3), changes abruptly from 2 to 1
and then to O critical points on the entire caustic. This type
of abrupt change in the configuration of critical points is
known as a “catastrophe,” and specifically in our case—a
"fold catastrophe," the only catastrophe possible in a prob-
lem of these dimensions (the codimension is one [16]). The
optical fold catastrophe is always accompanied by an
Ai%-shaped diffraction pattern near the caustic, elucidating
the result of Eq. (4). Hence, all finite-power 1D beams
accelerating along any convex trajectory display the same
Ai? intensity structure at the vicinity of their peak intensity,
and this feature is a manifestation of a general property of
the optical fold catastrophe [15,16].

We proceed to demonstrate our method experimentally.
Figure 1(b) describes schematically the experimental ap-
paratus used for generating and measuring optical beams
accelerating on arbitrary convex curves. In the lower inset
of Fig. 1(b), we present an example of an experimentally
measured optical beam, whose peak intensity follows a
curve of the form x = az’. [“a” and “b” and “k”
are henceforth freely used as arbitrarily chosen constants].
Figure 2(a) (top) presents two examples of optical intensity
distributions measured for beams accelerating along
nonparabolic trajectories. Substituting x = az® and x =
ble** — 1] for x = f(z) and solving Egs. (5) and (6), we
obtain phase masks ¢(x) that are loaded onto the spatial
light modulator (SLM). lluminating the SLM with a plane
wave, we generate light beams that propagate along these
predesigned curves. We measure the optical intensity in the
x-z plane as illustrated in Fig. 1(b). Figure 2(a) (bottom)
presents results obtained by numerically simulating the
experimental apparatus with the same input phase masks,
using a standard beam propagation code. The experimental
and the simulated optical intensities are in good agreement
with each other. At z = 0, the intensity is uniform (because
the SLM modulates only the phase), but as the waves
propagate, intensity features appear, following the curves
x = f(z). More examples, along with a discussion of the
effect of the finite size of the phase mask, are in sections B
and C in the supplemental material [18].
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Figure 2(b) summarizes several experiments of the type
presented in Fig. 2(a). In this set of experiments, we
generate a family of beams that follow the trajectories
x = a,7", with n = 1.5, 2, 3, 4, 5. The constants a,, are
chosen such that this family of beams will intersect at
z = 150 cm. Evidently, the beams accelerate along their
predesigned curves, and are clearly discernable from one
another, demonstrating our capability to form light beams
which accelerate along any convex curve x = f(z).

We now discuss the properties of the finite-power beams
accelerating along arbitrary curves. Figure 2(c) presents a
cross section along the x axis [a vertical cross section of the
x-y image presented in Fig. 1(b)], of the experimentally
obtained intensity structure of beams following the trajec-
tories x = asz°, and x = asz°>. These cross sections are
compared to the square of an Airy function (red), showing
good agreement. This demonstrates the prediction of
Eq. (4): the diffraction pattern of a 1D accelerating beam
at the vicinity of its peak intensity is always shaped
like an Airy function, irrespective of the beam’s accelera-
tion, since it manifests an optical fold catastrophe. The
“valleys” in the experimental data do not go down to zero
as those of the theoretical Airy function, due to the cross-
talk between pixels in our camera, and the imperfect
efficiency of our SLM.

Turning to quantify the diffraction broadening of the
beams, Fig. 2(d) presents the FWHM of the main-intensity
feature, for beams accelerating along the curves x = asz’
and x = b[e** — 1], vs propagation distance z. The simu-
lated and the measured widths are in good agreement. The
peak-intensity feature for x = asz> is nonbroadening and
even narrows, up to ~30 Rayleigh lengths of propagation,
at which point it abruptly starts diffracting. In the supple-
mental material [18], we derive an equation for the point at
which diffraction onsets, show that this point is determined
only by the size of the aperture and the choice of accel-
eration for the beam, and present additional examples.

Our method of generating accelerating beams employs a
phase-only, uniform amplitude field which is launched at
the plane z = 0 from a finite window, whereas the Airy
beams in [2] are formed by launching an Ai shaped field
amplitude at the plane z = 0. The phase of our x ~ z> beam
at z = 0, coincides with the phase of the analytic expansion
of the Ai function: our phase mask for the x ~ z> beam
roughly follows ¢(xg) ~ xg/ %, whereas asymptotically
Ai(—x) ~ sin(x*/?). Notably, our beam accelerates along
a parabola just like the Airy beams of [2], but its main lobe
narrows instead of being invariant during propagation. This
suggests that the acceleration property of finite-power ac-
celerating beams is due only to the phase relation between
the wavelets forming the beam, whereas the self-similarity
feature of the peak intensity at different propagation planes
can be attributed to its intensity distribution.

In this Letter, we have introduced optical beams prop-
agating along any smooth convex trajectory in space.
The equations describing the construction of these beams

provide a general platform for designing and exploring a
completely new family of shaped light beams. We have
shown that the beams are nonbroadening to a preplanned
extent, and that their Ai®> shaped diffraction pattern is a
universal feature, characteristic of all arbitrarily accelerat-
ing convex 1D beams. These ideas can be used for a variety
of applications. For example, our technique facilitates a
means to optically move particles in air and fluid, and to
use light to induce plasma channels in air, along any
arbitrarily predesigned trajectories. As such, we envision
that the work presented here will add both versatility and
understanding to this new emerging field.
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E.G. and W. W. did the experiments, E. G. and O.R. did
the analysis. M. S. provided guidance, and E. G. and M. S.
wrote the Letter.
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