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Parity-time (PT ) symmetric periodic structures, near the spontaneous PT -symmetry breaking point,

can act as unidirectional invisible media. In this regime, the reflection from one end is diminished while it

is enhanced from the other. Furthermore, the transmission coefficient and phase are indistinguishable from

those expected in the absence of a grating. The phenomenon is robust even in the presence of Kerr

nonlinearities, and it can also effectively suppress optical bistabilities.
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In the last few years considerable research effort has
been invested in developing artificial materials appropri-
ately engineered to display properties not found in nature.
In the electromagnetic domain, such metamaterials make
use of their structural composition, which in turn allows
them to have complete access of all four quadrants of the
real �-� plane. Several exotic effects ranging from nega-
tive refraction to superlensing and from negative Doppler
shift to reverse Cherenkov radiation can be envisioned in
such systems [1]. Quite recently, the possibility of synthe-
sizing a new family of artificial optical materials that
instead rely on balanced gain and loss regions has been
suggested [2–6]. This class of optical structures deliber-
ately exploits notions of parity (P ) and time (T ) symmetry
[7–9] as a means to attain altogether new functionalities
and optical characteristics [2]. Under PT symmetry, the
creation and absorption of photons occurs in a controlled
manner, so that the net loss or gain is zero. In optics, PT
symmetry demands that the complex refractive index
obeys the condition nð~rÞ ¼ n�ð�~rÞ, in other words the
real part of the refractive index should be an even function
of position, whereas the imaginary part must be odd.
PT -synthetic materials can exhibit several intriguing fea-
tures. These include among others, power oscillations
[2,4,10], absorption enhanced transmission [5], double
refraction, and nonreciprocity of light propagation [2].
In the nonlinear domain, such pseudo-Hermitian nonreci-
procal effects can be used to realize a new generation of
on-chip isolators and circulators [6]. Other exciting results
within the framework of PT optics include the study of
Bloch oscillations [11], and the realization of coherent
perfect laser absorbers [12] and nonlinear switching struc-
tures [13].

To date, most of the studies on optical realizations ofPT
synthetic media have relied on the paraxial approximation
which maps the scalar wave equation to the Schrödinger
equation, with the axial wave vector playing the role of
energy. This formal analogy allows one to investigate ex-
perimentally fundamental PT concepts that may impact

several other areas, ranging from quantum field theory and
mathematical physics [7–9], to solid state [14] and atomic
physics [15]. Among the various themes that have fasci-
nated researchers, is the existence of spontaneous PT
symmetry breaking points (exceptional points) where the
eigenvalues of the effective non-Hermitian Hamiltonian
describing the dynamics of these systems abruptly
turn from real to complex [9]. Recently, interest in
PT -scattering configurations [16–19] has been revived in
connection with using such devices under a dual role, that of
a lasing and a perfect coherent absorbing cavity [12,20].
In this Letter we explore the possibility of synthesizing

PT -symmetric objects which can become unidirection-
ally invisible at the exceptional points. In recent years the
subject of cloaking physics has attracted considerable in-
terest, specifically in connection to transformation optics
[1,21]. Here, our notion of invisibility stems from a funda-
mentally different process. As opposed to surrounding a
scatterer with a cloak medium, in our case the invisibility
arises because of spontaneous PT -symmetry breaking.
This is accomplished via a judicious design that involves
a combination of optical gain and loss regions and the
process of index modulation. Specifically, we consider
scattering from PT -synthetic Bragg structures (see
Fig. 1) and investigate the consequences of PT symmetry
in the scattering process. It is well known that passive
gratings (involving no gain or loss) can act as high effi-
ciency reflectors around the Bragg wavelength. Instead, we
find that at the PT symmetric breaking point, the system
is reflectionless over all frequencies around the Bragg
resonance when light is incident from one side of the
structure while from the other side its reflectivity is en-
hanced. Furthermore, we show that in this same regime the
transmission phase vanishes—a necessary condition for
evading detectability. Even more surprising, is the fact
that these effects persist even in the presence of Kerr
nonlinearities.
To demonstrate these effects we consider an optical

periodic structure or grating having a PT -symmetric
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refractive index distribution nðzÞ ¼ n0 þ n1 cosð2�zÞ þ
in2 sinð2�zÞ for jzj<L=2. This grating is embedded in a
homogeneous medium having a uniform refractive index
n0 for jzj> L=2 (see Fig. 1). Here n1 represents the peak
real index contrast and n2 the gain and loss periodic
distribution. In practice, these amplitudes are small, e.g.,
n1, n2 � n0. The grating wave number � is related to its
spatial periodicity � via � ¼ �=� and in the absence of
any gain modulation (n2 ¼ 0) the periodic index modula-
tion leads to a Bragg reflection close to the Bragg angular
frequency !� ¼ c�=n0 (where c is the speed of light in

vacuum). In this arrangement, a time-harmonic electric
field of frequency ! obeys the Helmholtz equation:

@2EðzÞ
@z2

þ!2

c2
n2ðzÞEðzÞ ¼ 0: (1)

For jzj � L=2, Eq. (1) admits the solution E�
0 ðzÞ ¼

E�
f expðikzÞ þ E�

b expð�ikzÞ for z <�L=2 and Eþ
0 ðzÞ ¼

Eþ
f expðikzÞ þ Eþ

b expð�ikzÞ for z > L=2 where the wave

vector k ¼ n0!=c. The amplitudes of the forward and
backward propagating waves outside of the grating domain
are related through the transfer matrix M:

Eþ
f

Eþ
b

 !
¼ M11 M12

M21 M22

� �
E�
f

E�
b

� �
: (2)

The transmission and reflection amplitudes for left (L)
and right (R) incidence waves, can be obtained from the
boundary conditions Eþ

b ¼ 0 (E�
f ¼ 0) respectively, and

are defined as tL � Eþ
f

E�
f
, rL � E�

b

E�
f
; (tR � E�

b

Eþ
b

; rR � Eþ
f

Eþ
b

).

These can be expressed in terms of the transfer matrix
elements as follows [16,17]

tL ¼ tR ¼ t ¼ 1

M22

; rL ¼ �M21

M22

; rR ¼ M12

M22

:

(3)

While the transmission for left or right incidence is the
same, this is not necessarily the case for the reflection.
From the above relations one can deduce the form of the
scattering matrix S [17] in terms of theM-matrix elements.
For PT -symmetric systems, the eigenvalues of the
S matrix either form pairs with reciprocal moduli or they

are all unimodular. In the latter case the system is in the
exact PT phase while in the former one it is in the broken-
symmetry phase [12,16]. For the complex periodic struc-
ture considered here, the transition from one phase to
another (spontaneousPT -symmetry breaking point) takes
place when n1 ¼ n2 [22].
To analyze this structure we decompose the electric field

inside the scattering domain EðzÞ, in terms of forward
EfðzÞ and backward EbðzÞ traveling envelopes as

EðzÞ ¼ EfðzÞ expðikzÞ þ EbðzÞ expð�ikzÞ: (4)

Next we employ slowly varying envelopes for the field,
i.e., EfðzÞ ¼ EfðzÞ expði�zÞ and EbðzÞ ¼ EbðzÞ expð�i�zÞ,
where � ¼ �� k is the detuning. Substituting these ex-
pressions in Eq. (1), and keeping only synchronous terms
while eliminating second order corrections in n1, and n2,
we can then express the field at a point z inside the sample
in terms of the field at z ¼ �L=2. For k � � close to the
Bragg point, we get

EfðzÞ
EbðzÞ

� �
¼ eiz��̂3ÛeiL��̂3=2

Efð� L
2Þ

Ebð� L
2Þ

 !
(5)

where Û ¼ cos½�ðzþ L=2Þ�1̂� i sin½�ðzþ L=2Þ��̂ � ê, �̂
are the Pauli matrices, and the unit vector ê is defined

as ê ¼ ð1=�Þð�kn2=2n0;�ikn1=2n0;�Þ, while � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � k2ðn21 � n22Þ=4n20

q
. By imposing continuity of the

field at z ¼ 	L=2, Eq. (5) becomes equivalent to Eq. (2).
The transmission T � jtj2 and reflection coefficients
RL � jrlj2 and RR � jrrj2 are in this case

T ¼ j�j2
j�j2cos2ð�LÞ þ �2j sinð�LÞj2 (6)

RL ¼ ðn1 � n2Þ2k2=4n20
�2 þ j� cotð�LÞj2 ; RR ¼ ðn1 þ n2Þ2k2=4n20

�2 þ j� cotð�LÞj2 :

For n2 ¼ 0 one recovers the standard scattering features of
periodic Bragg structures. Namely, RL ¼ RR, while close
to the Bragg point � ¼ 0 the reflection (transmission)
becomes unity (zero) (in the large L limit), see Fig. 2.
Instead, if n2 � 0, an ‘‘asymmetry’’ in the left (right)
reflection coefficient starts to develop [22]. We would
like to note that the PT arrangement considered here is
fundamentally different from that encountered in distrib-
uted feedback lasers (DFBs) [23]. In DFB systems both
the index and gain and loss profile vary in phase and thus
no PT -symmetry breaking is possible.
At n1 ¼ n2, this asymmetry becomes most pronounced.

Even more surprising is the fact that at the Bragg point
� ¼ 0, the transmission is identically unity, i.e., T ¼ 1,
while the reflection for left incident waves is RL ¼ 0 (see
Fig. 2). This is a direct consequence of the PT nature of
this periodic structure. At the same time, the reflection for
right incident waves grows with the size L of the sample as

FIG. 1 (color online). Unidirectional invisibility of a
PT -symmetric Bragg scatterer. The wave entering from the
left (upper figure) does not recognize the existence of the
periodic structure and goes through the sample entirely unaf-
fected. On the other hand, a wave entering the same grating from
the right (lower figure), experiences enhanced reflection.
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RR ¼ L2

�
k
n1
n0

�
2
�
sinðL�Þ
L�

�
2 ���!�!0

L2

�
k
n1
n0

�
2
: (7)

Such quadratic increase of the field intensity is a hallmark
of exceptional point dynamics [10]. This behavior is di-
rectly confirmed by our numerical simulations. We will
refer to this phenomenon as unidirectional reflectivity.
Furthermore, Eqs. (6) indicate that a transformation
n2 ! �n2, reverts the reflectivity of the system, allowing
for reflectionless behavior for right incident waves, i.e.,
RR ¼ 0, while the reflection from the left RL is now
following the prediction of Eq. (7). In other words, the
phase lag between the real and imaginary refractive index
dictates the unidirectional reflectivity of the system.

Reflectionless potentials in one-dimensional scattering
configurations are not in general invisible. This is due to
the fact that the phase of the transmitted wave might
depend on energy, thus leading to wave packet distortion
after the potential barrier. In this respect, a transparent
potential can be detected from simple time-of-flight
measurements. It is therefore crucial to examine the phase
�t of the transmission amplitude t ¼ jtj expði�tÞ and
compare it with the phase acquired by a wave propagating
in a grating-free environment (�t ¼ 0) [24]. Using
Eq. (5), we deduce that the phase �t close to the Bragg
point is

�t ¼ arctan

�
��

�
tanð�LÞ

�
þ L�: (8)

At n1 ¼ n2 we find that � ¼ �, which results in a trans-
mission phase �t ¼ 0. Thus interference measurements
will fail to detect this periodic structure. Although the
above theoretical analysis is performed close to the

Bragg point � � 0, our numerical results reported in
Fig. 3(a), indicate that these effects are valid over a very
broad range of frequencies. For comparison, we also report
in Fig. 3(a), �t for the case of a passive (n2 ¼ 0) Bragg
grating.
Next, we analyze the dependence of the transmission

delay time 	t � d�t=dk [25,26], on the detuning �.
This quantity provides valuable information about the
time delay (or advancement) experienced by a transmitted
wave packet when its average position is compared to
the corresponding one in the absence of the scattering
medium. Using Eq. (8) we find that at the spontaneous
PT -symmetry breaking point the transmission delay
time is 	t ¼ 0. In Fig. 3(b), we show results for a PT
structure at n1 ¼ n2 together with those expected from the
passive case.
It is also interesting to investigate the robustness of the

above phenomena in the presence of Kerr nonlinearities.
To this end, we assume the presence of a Kerr term in the
refractive index profile, i.e., nðzÞ ¼ n0 þ n1 cosð2�zÞ þ
in2 sinð2�zÞ þ 
jEðzÞj2. By decomposing the optical field
into two counterpropagating waves and by considering
only synchronous terms [22,27], we can then obtain
a set of equations describing the field envelopes
EbðzÞ and EfðzÞ, in terms of Stokes variables [28]:
_S0ðzÞ ¼ 2�S3; _S1ðzÞ ¼ 2gS3; _S2ðzÞ ¼ 2�S3 � 3�S0S3;
_S3ðzÞ ¼ �2�S2 þ 3�S0S2 þ 2�S0 � 2gS1 where � ¼
k
=n0, � ¼ kn1=2n0 and g ¼ kn2=2n0. It can be shown
[22] that this nonlinear system has the following conserved
quantities gS0��S1¼C1, 3�gS20�4��S1þ4�gS2¼C2.
Using these constants of the motion, one can solve exactly
the Stokes equations. Because of lack of space we will
not discuss the derivations in detail here [22] but rather
cite the final results for the transmission and reflection
coefficients

-1 0 1
10

-6

10
-4

10
-2

10
0

101-
0

1

2

3

4

T
L
 (n

2
 = 10

-3
)

R
R
 (n

2
 = 10

-3
)

R
L
 (n

2
 = 10

-3
)

T
L
 = T

r
 (n

2
 = 0)

R
L
 = R

R
 (n

2
 = 0)

δ (detuning)

δ

FIG. 2 (color online). Exact numerical evaluation [from
Eq. (1)] of transmission T � jtj2 and reflection R ¼ jrj2
coefficients for a Bragg grating [29]. We have used n0 ¼ 1,
n1 ¼ 10�3, L ¼ 12:5�, and � ¼ 100. In case of a PT grating,
the system is at the exceptional point when n2 ¼ n1. In this case,
RL is diminished (up to n21;2 
 10�6—see inset) for a broad

frequency band, while RR is enhanced, in excellent agreement
with our theoretical predictions.
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FIG. 3 (color online). (a) Transmission phase �t as a function
of the detuning � for the PT -periodic system of Fig. 2 [29].
Together with the results of the PT -exceptional point (n2¼n1),
we also report for comparison the transmission phase for the
passive structure (n2 ¼ 0). (b) The corresponding transmission
delay times 	t as a function of detuning.
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TL ¼ ð�þ gÞS0ðL2Þ � C1
ð�þ gÞS0ð� L

2Þ � C1
;

RL ¼ ð�� gÞS0ð� L
2Þ þ C1

ð�þ gÞS0ð� L
2Þ � C1

TR ¼ ð�� gÞS0ð� L
2Þ þ C1

ð�� gÞS0ðL2Þ þ C1
;

RR ¼ ð�þ gÞS0ðL2Þ � C1
ð�� gÞS0ðL2Þ þ C1

:

In contrast to the linear case, now TL � TR for n1 � n2
indicating a diode action [6,22] (see Fig. 4). However, of
interest here is the behavior of the system at the excep-
tional point n1 ¼ n2. We find that TL ¼ TR ¼ 1, while
RL ¼ 0, as in the linear case. These results are valid for
any input intensity as shown in Fig. 4. At the same time we
have found that the transmission phase is again indepen-
dent of the detuning � and equal to �t ¼ 0. We thus
conclude that the phenomenon of unidirectional invisibil-
ity of the PT -periodic system at the exceptional point is
entirely unaffected by the presence of Kerr nonlinearities.

We have shown that the interplay of Bragg scattering
and PT symmetry allows for unidirectional invisibility
which can be observed over a broad range of frequencies
around the Bragg point. This process was found to be
robust against perturbations. In the presence of nonlineari-
ties this unidirectional invisibility still persists and non-
reciprocal transmission is possible. Of interest will be to
investigate if these phenomena can also occur in higher
dimensions and under vectorial conditions.
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