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We study a recent experiment [K. Li et al., Phys. Rev. Lett. 101, 250401 (2008)] on diffracting a Bose-

Einstein condensate by two counterpropagating optical fields. Including the local-field effect, we explain

the asymmetric momentum distribution and self-imaging of the Bose-Einstein condensate self-

consistently. Moreover, we find that the two counterpropagating optical fields could not produce a perfect

optical lattice, which is actually deformed by the local-field effect. Our work implies that the local-field

effect could be essential for getting a better quantitative analysis of other optical lattice experiments. In

particular, the intensity imbalance of the two optical fields could act as a new means to tailor both cold

atom dynamics and light propagation.
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Intuitively, two counterpropagating optical fields within
a dilute atomic gas will induce a dipole potential, which is
now called an ‘‘optical lattice’’ [1], and the atomic gas
trapped within the lattice could function as a photonic
crystal [2]. Currently, optical lattices are playing an im-
portant role in many aspects of cold atom [3–7] and
molecule [8] research, such as splitting, reflecting, and
diffracting matter waves [3], generating matter-wave mix-
ing [4] and atom entanglement [5], as well as studying
strongly correlated quantum phenomena [6].

The interaction between light and a cold atom or mole-
cule gas is an interesting research topic. Many theoretical
papers on this issue have shown that the interaction in-
cludes two processes [9]. First, the gas density will be
modulated by the light-induced dipole potential and inter-
atomic interaction. Second, the atomic motion will pro-
duce a back influence on the light propagation through the
local modulation of the density-dependent refraction in-
dex. The latter processing is called the local-field effect.
However, the local modulation of refraction index by a
far-off resonance optical lattice is very small in a dilute
atomic/molecular gas, and thus the local-field effect is
usually ignored [3–8].

Now we show that in some situations, a very small local-
field modulation could produce a strong influence on the
dynamics of a cold atom gas irradiated by two counter-
propagating optical fields, and deform an optical lattice.
Our conclusion is drawn from analyzing a recent experi-
ment on diffracting a Bose-Einstein condensate (BEC) by
two counterpropagating optical fields with unequal inten-
sities [10]. We show that the local-field effect is the key for
successfully explaining the asymmetric momentum distri-
bution of the BEC. We also find that self-imaging could
occur when the two fields have the same intensity, but a
longer light-condensate interaction time is required.

Our scheme is shown in Fig. 1. An atomic BEC is
irradiated by two counterpropagating optical fields E1

and E2 with the same far-off resonant frequency. E3 and
E4 are scattered optical fields. When the optical frequency
is far-off resonant from the electronic transition frequency
of the atoms, the wave function �ðr; tÞ for the condensate
satisfies the Gross-Pitaevskii equation [9],
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where d is the induced dipole moment of the atom by the
total optical field E, � is the detuning, and g is the
pseudopotential. Equation (1) shows that the nonuniform
optical field will disturb the matter wave. On the other
hand, the refraction index of the condensate will be modi-

fied, i.e., nðr; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2=ð"0"�Þj�ðr; tÞj2p

. As a result,
the atomic motion will have a back influence on the

propagation of the optical field Eðr; tÞ ¼ ~Eðr; tÞe�i!t,

with the amplitude ~Eðr; tÞ controlled by the Helmholtz
equation with wave number kL ¼ !=c,

r2 ~Eðr; tÞ � ½n2ðr; tÞk2L�~Eðr; tÞ � 0: (2)

When the incident optical fields and the matter
wave have a very large transverse width, the spatial deriva-
tives of the electric field and the wave function in the
transverse direction could be neglected in our further
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FIG. 1 (color online). A Bose-Einstein condensate is irradiated
by two counterpropagating optical fields, E1 and E2. Outside the
condensate, E3 and E4 are scattered optical fields.
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analysis. We now use Eqs. (1) and (2) to study a recent

experiment in Ref. [10] with the initial function �ðr;0Þ¼
½ ffiffiffiffi

N
p

=ðw?
ffiffiffiffiffiffi
wx

p ffiffiffiffiffiffi
�34

p
Þ�exp½�x2=ð2w2

xÞ�, wx¼75�m, w? ¼
14 �m. The intensity for the optical field E1 is
I1 ¼ 215 mW=cm2; the atom number is N ¼ 2� 105.

We show the momentum distribution �ðp; tÞ ¼R
�ðx; tÞ expðipx=@Þdx= ffiffiffiffiffiffiffi

2�
p

calculated with the local-

field effect (dashed line) in Fig. 2. The left and right panels,
respectively, correspond to the intensity balance case
(I2 ¼ I1) and the intensity imbalance case in which
I2 ¼ 14 mW=cm2 is much weaker than I1. To highlight
the role of the local-field effect, the results calculated
without the local-field effect are shown with ‘‘+’’ symbols
for comparison. Without including the local-field effect in
our calculation, the distributions are symmetric in both
cases. However, once the local-field effect is included,
the asymmetric distributions appear in the intensity imbal-
ance case. The distribution in the right panel at 25 �s is
nearly the same as the initial distribution, implying the
matter-wave self-imaging. The self-imaging time calcu-
lated by us agrees with the experimental result in
Ref. [10]. Moreover, we show that in the intensity balanced
case, it takes a longer time (52:3 �s) to induce the
self-imaging, which was not demonstrated in Ref. [10].

Figure 2 shows that self-imaging is irrelevant to the inten-
sity difference, and not much affected by the local-field
effect.
Furthermore, we work out the spatial distributions of

atomic density (solid line) and optical dipole potential
(dashed line) in Figs. 3 and 4. In the intensity balance
case, the condensate is symmetrically localized in optical
potential wells. In contrast, in intensity imbalance case, the
condensate spreads wider due to the lower depth of the
dipole potential wells and loses symmetry in the potential
wells. Thus, in view of the optical fields, the condensate
acts as an imperfect photonic crystal with defects. On the
other hand, although Figs. 3 and 4 show that in a small
region the optical field looks like a crystal for the atomic
gas, the detailed plots of the optical intensity in a larger
region, as shown in Fig. 5, display the deformed optical
lattice. The left panel of Fig. 5 shows that the optical
intensity in the intensity balance case is symmetric, but
nonuniform, and varies with time. The right panel of Fig. 5
shows that the optical field in the intensity imbalance case
behaves as a tilted board whose tilting direction varies with
the time. In this sense, the atoms are like riding a seesaw,
which forces the gas to adjust its momentum distribution
alternately with time.
To get a more transparent physical picture of interaction

between the light and the atomic gas, we now turn to a

modified coupled mode theory, i.e., Ez ¼ ½Aþei’ðx;tÞ þ
A�e�i’ðx;tÞ�= ffiffiffi

n
p

[11] where ’ðx; tÞ ¼ kL
R
x
0 nðx0; tÞdx0,

and Aþ and A�, respectively, are the right- and left-
propagating optical field. Neglecting the term @2A�=@x2,
from Eq. (2) we obtain @A�=@x ¼ S�A� where S� ¼
dn=dx=ð2nÞ exp½�2i’ðxÞ� [11]. The results obtained
with this theory agree well with those obtained by directly
solving the Gross-Pitaevskii equation and Eq. (2).
The right-propagating (left-propagating) optical field is

reflected by the atomic medium and thus has loss of its
intensity; however, it also has gain from the reflection of
the left-propagating (right-propagating) field. The local-
field effect will lead to both time- and position-dependent
loss and gain, and thus has a strong influence on optical
propagation, as shown in Figs. 6 and 7, where the spatial
distributions of the optical intensities Iþ ¼ jAþj2 and

I2 = 215 mW/cm
2

0

0.5

1

I2 = 14 mW/cm
2

0

0.5

1

0

0.1

0.2

|Φ
(p

,t)
|2 / |

Φ
(0

,0
)|2

0

0.1

0.2

0

0.1

0

0.2

0.4

0.6

-12 -8 -4 0 4 8 12
p ( h

_
k

L
)

0

0.2

0.4

0.6

0.8

-12 -8 -4 0 4 8 12
p ( h

_
k

L
)

0

0.1

0.2

0.3

|Φ
(p

,t)
|2 / |

Φ
(0

,0
)|2

0

0.1

0

0.1

0.2

0.3

t=0 µs t=0 µs

t=12.5 µst=12.5 µs

t=25 µs

t=40 µs

t=25 µs

t=40 µs

t=52.34 µs t=52.34 µs

FIG. 2 (color online). The momentum distributions j�ðp; tÞj2
calculated, respectively, with the local-field effect (dotted line)
and without the local-field effect (’’+’’ symbols) are shown.
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FIG. 3 (color online). The spatial density distributions (solid
line), j�ðx; tÞj2, and the optical potential (dashed line) at time
t ¼ 25 �s and 35 �s in the intensity balance case are shown.
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I� ¼ jA�j2 are plotted, respectively, for the intensity bal-
ance case (I� is not plotted in this case, due to its being
identical to Iþ) and intensity imbalance case. In the inten-
sity balance case (Fig. 6), the loss and gain is symmetric in
space; consequently the optical intensity is always sym-
metric, which leads to the symmetric intensity distribution
in Fig. 5 and the symmetric momentum distribution in
Fig. 2. Because of the time-dependent refraction index
through the local atom density, the optical intensity
‘‘breathes’’ with the time, which accounts for the height
change of the central peak in the left panel of Fig. 5. In the
intensity imbalance case (Fig. 7), the loss and gain is
asymmetric such that the optical fields at the initial stage
lose spatial symmetry and the asymmetry later becomes
even remarkable. This asymmetric optical field creates a
deformed interference pattern (see the right panel of Fig. 5)
and leads to the asymmetric optical dipole potential, which
results in the asymmetry of both the atomic density in
Fig. 4 and the momentum distribution in Fig. 2. The density
asymmetry further leads to the change of the reflectance
for the right- and left-propagating light. Thus, Fig. 7 shows
that when the time increases, the asymmetry of the
optical intensities is further enhanced, and the right-
propagating light is amplified [IþðL; tÞ=I1 > 1] or reduced
[IþðL; tÞ=I1 < 1] with the time. Meanwhile the

left-propagating optical field is correspondingly reduced
or amplified.
Based on the above physical picture, we are

now ready to establish a straightforward connection of
the local-field effect to the asymmetric momentum
distribution of the BEC. Making the transformation
�ðx; tÞ ¼ P

n�nðtÞe2inkLx, we approximately obtain

the equation, i@ _�n � J1 expð�i�þtÞ�nþ1 þ J0�n þ
J�1 expð�i��tÞ�n�1, in which Jl ¼

R jd �Ej2=ðL�Þ�
expði2lkLxÞdx (l ¼ 0, �1, L is the lattice length),
and �� ¼ 2ð1� 2nÞ@k2L=m. Without the local-field
effect, jd � Ej2 is an even function of the position, and
J1 ¼ J�1. As a result, the momentum distribution is al-
ways symmetric. This also applies to the intensity balance
case with the local-field effect (see Fig. 6). However, in the
intensity imbalance case with the local-field effect, jd �Ej2
has no definite parity (see Fig. 7), and J1 � J�1, such
that the momentum transfer from the zero momentum
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FIG. 4 (color online). The spatial density distributions (solid
line), j�ðx; tÞj2, and the optical potential (dashed line) at time
t ¼ 25 �s and 35 �s in the intensity imbalance case are shown.

FIG. 6. The intensity of the right-propagating optical field in
the intensity balance case is shown.
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FIG. 5. The detailed envelope of the optical intensity is shown
in the condensate filled regime.

FIG. 7. The intensities of the right- and left-propagating opti-
cal fields in the intensity imbalance case are shown.
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component to the diffracted component �1 is not equal
to that of ��1, and thus the asymmetric diffraction is
induced.

In summary, we have shown that the diffraction of a
BEC by two counterpropagating optical fields can be
strongly influenced by the backaction of the local field.
We explain the asymmetric momentum distribution of the
diffracted atoms and the matter-wave self-imaging self-
consistently for the first time. We also found that the self-
imaging could be induced in the intensity balance case
when the light-condensate interaction time is sufficiently
long, suggesting that the appearance of the self-imaging is
irrelevant to the intensity difference of the two optical
fields.

Our analysis shows that the atomic gas is not a perfect
photonic crystal, and the optical lattice formed in the
atomic gas is slightly deformed. However, this small de-
formation produces a remarkable effect on the cold atom
dynamics. These results will shed new light on the precise
quantitative analysis of other optical lattice experiments
such as the demonstration of the quantum phase transition
theory [6], superexchange [12], the crossover between
quantum tunneling, and the thermal activation of phase
slips [13], collective mode, and transport [14]. The Bose-
or Fermi-Hubbard models have been used in analysis of
these experimental observations; however, precise quanti-
tative analysis has not yet been achieved. The difficulty of
the temperature measurement of the atomic gas is now
investigated as a main factor that hampers the quantitative
analysis of the experiments [15]. However, an assumption
of a perfect optical lattice with a uniform amplitude, used
for realizing these models is in question, due to the defor-
mation of the optical lattice by local-field effects. Thus, the
Bose- or Fermi-Hubard model with this deformation
should be applied to give a better quantitative analysis of
cold atoms within an ‘‘optical lattice.’’ Moreover, local-
field effect may offer a new way to control quantum
dynamics of an atomic gas.

Similar analysis of Bragg amplification of a weak beam
interfering with a strong laser beam in a thermal molecular
gas was presented [16]. The experiment in Ref. [10] and
our analysis as well as [16] show that the intensity differ-
ence of two counterpropagating optical fields would be a
new tool for tailoring the dynamics of atomic or molecular
gases and optical propagation. This issue has just been
initiated, leading to many questions. For example, if the
intensity of one beam is further weakened to quantum
level, what effect should be expected? Can the quantum

reflection or splitting of a cold atomic beam be controlled
in this way? Is the local-field effect a new decoherence
source for precise measurement with an optical lattice [7]?
These outstanding questions are worthy of further theoreti-
cal and experimental investigation.
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