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The response of cold atom gases to small periodic phase modulation of an optical lattice is discussed.

For bosonic gases, the energy absorption rate is given, within linear response theory, by the imaginary part

of the current autocorrelation function. For fermionic gases in a strong lattice potential, the same

correlation function can be probed via the production rate of double occupancy. The phase modulation

gives thus direct access to the conductivity of the system, as a function of the modulation frequency. We

give an example of application in the case of bosonic systems at zero temperature and discuss the link

between the phase and amplitude modulation.
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Cold atomic systems have proven to be remarkable labo-
ratories to study several effects of strongly correlated sys-
tems. In particular, the control of parameters, kinetic energy
in an optical lattice, and interaction using a Feshbach
resonance, allows us to potentially use them as quantum
simulators, with considerable success both for pure and
disordered systems [1,2]. However, in addition to realizing
the systems, the ability to probe it is important. Because of
the electrical charge neutrality of cold atoms, unlike elec-
tron systems, they are insensitive to the usual electromag-
netic probes. This makes it potentially difficult to probe
correlations in such systems. To overcome this issue, sev-
eral probes have been proposed besides the standard time of
flight (TOF) experiment such as Bragg spectroscopy [3–6]
to measure the dynamic structure factor, radio frequency
spectroscopy measurement [7,8] to count the number of
molecules formed by the Feshbach resonance, shot noise
measurement [9–12] for the density-density correlation
function, or momentum-resolved Raman spectroscopy
[12,13] for the single-body spectrum function.

Among the various spectroscopic probes a particularly
simple probe consists in changing periodically the ampli-
tude of the optical lattice [14,15]. The energy absorbed by
such a modulation can be estimated from the TOF image.
The corresponding theory of the energy absorption rate
(EAR) spectrum [16,17], was shown to give access both
to the Mott-insulating (MI) gap and to the kinetic-energy
correlations in the system. Althoughmeasuring the EAR by
the TOF was possible for bosons, a similar measure was
highly inconvenient for fermions. It was proposed [18] that
a measurement of the doublon production rate (DPR) in
response to the amplitude modulation would give access to
the same information. Such a measure was successfully
implemented for fermionic systems [19–22]. The ampli-
tude modulation of the optical lattice coupled either to EAR
or to DPR is thus a simple but powerful and versatile probe.

In this Letter we propose an alternative probe, based on a
phase modulation of an optical lattice potential. Such a
modulation is known to lead to a current [23–26] or to band

narrowing [27,28]. Here we use the phase modulation in
connection with EAR or DPR techniques, to analyze the
spectrum of the system. We show that such a probe gives
access to the current autocorrelation function and is thus
analogous to optical conductivity measurements in con-
densed matter systems, allowing a very close comparison
at the experimental level between the two domains. We
illustrate the use of such a probe by some examples for
bosonic gases and compare with the spectrum obtained by
the amplitude modulation spectroscopy.
Let us first describe our proposed probe: The optical

lattice potential is created by shining laser against a mirror.
If the mirror is stationary, the created D-dimensional opti-
cal lattice is given as VopðrÞ ¼ V0

P
D
�¼1 cos

2ðQ�r�Þwhere
Q ¼ ðQ1; � � � ; QDÞ is a wave vector of the optical lattice.
One can modulate the phase by oscillating the mirror as
shown in Fig. 1. The lattice potential in the laboratory
frame is modified as Vopðr; tÞ ¼

P
D
�¼1 V0cos

2½Q�ðr� �
F�ðtÞÞ� where FðtÞ represents the oscillation of the phase.

It is convenient to switch to the comoving frame by the
gauge transform UðtÞ ¼ expðiMFðtÞ � J=@Þ where M is a
mass of the atoms and J the current operator [29]. In the
comoving frame, the lattice becomes a stationary one,
VopðrÞ, and an additional term, which reflects the inertial

force, emerges in the Hamiltonian:

FIG. 1 (color online). A schematic showing the setup of the
periodic phase modulation of an optical lattice. The incident
laser and the reflected one forms the standing wave correspond-
ing to an optical lattice. The lattice potential follows mirror
oscillation, and, consequently, the phase is modulated.
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HðtÞ ¼ H0 �M _FðtÞ � J; (1)

where H0 is the Hamiltonian of the interacting system in
the optical lattice VopðrÞ. Carrying out the further gauge

transform U0ðtÞ ¼ exp½iNM
R
t dt0 _F2ðt0Þ=2@� where N is

the total atom number, we can find an expression identical
to that of a charged particle in an electromagnetic field, the
atomic mass corresponding to the charge. The vector po-
tential is given as Aext ¼ _FðtÞ with r �Aext ¼ 0 and the
scalar potential is zero �ext ¼ 0 [23]. The system thus
behaves as charged particles under an electric field
EextðtÞ ¼ � €FðtÞ. Hereafter we set FðtÞ ¼ f cosð!tÞ.

Let us first consider bosonic atom cases. One can then
measure the EAR by similar techniques than for the
amplitude modulation [14]. The EAR is given by the
time average of the absorbed energy: Rð!Þ ¼
!
2�

RTþ2�=!
T dth _HðtÞi, where h� � �i denotes the statistical

average with the Hamiltonian (1). The EAR within the
linear response theory is given by

RPMð!Þ ¼ �M2!3

2@

XD
�;�¼1

f�f�= ~�R
��ð!Þ; (2)

where ~�R
��ð!Þ is the Fourier transform of the retarded

current correlation function for the Hamiltonian H0. Note
that for the EAR, due to _HðtÞ ¼ M!2 cosð!tÞf � J, one can
automatically derive the second-order response of Rð!Þ in
terms of f� within the first order perturbation theory. Note,

as shown in Eq. (1), that in order to stay within linear
response a small modulation is necessary. In particular
one needs jF�ðtÞj � Q�1

� , thus a modulation amplitude

smaller than a lattice constant. This is something difficult
but achievable with the current experimental technique
[30]. For the higher frequency the smaller amplitude
needed to stay within the linear response and away from
the dynamically induced phase transition [31,32]. We will
confine our analysis in the following to such a regime for

which the EAR gives direct access to ~�R
��ð!Þ.

Since the EAR directly gives ~�R
��ð!Þ, it is immediately

related to the ‘‘optical conductivity’’ [33]. While the zero
frequency part of the Drude peak in the conductivity will
be suppressed in the EAR due to the factor!3 in Eq. (2), all
the other features, at finite frequency, are perfectly repro-
duced. It is thus a particularly useful quantity to make
comparison with similar phenomena in condensed matter
systems, or to probe the physics of disordered systems, for
which transport is the prime probe.

It is interesting to compare this result to another
one obtained for the amplitude modulation [16], in the
same linear response regime. In the later case the EAR is
either given by the density correlation function for weak
optical lattices or by the kinetic energy one for strong
optical lattices [16,22]. The different representation of
perturbation operator comes from the fact that the energy
scale of the amplitude modulation also goes beyond the

chemical potential as the energy scale of the lattice poten-
tial VopðrÞ increases. On the contrary, in the case of the

phase modulation, the perturbation in Eq. (1) does not
follow the energy scale of the lattice potential. Therefore,
Eq. (2) is independent of the strength of the lattice
potential. This is a definite advantage of the phase modu-
lation, which is always related to the same physical
quantity irrespectively of the strength of the optical lattice.
Another important difference between the phase and
amplitude modulation comes from their symmetries.
Indeed, for example, in the case of a 1D strong lattice the
amplitude modulation would correspond to the kinetic-

energy correlation function which is given by T /P
k cosðkÞbyk bk while the current is given by J /P
k sinðkÞbyk bk. For the parity inversion, J ! �J while T

is invariant. This affects the selection rules. The phase
modulation perturbation probes the transitions from a state
to an opposite parity state. In contrast, the parity is preserved
in the transition due to the amplitudemodulation. Thus, both
modulations complement each other in the way they probe
excited states, and lead in general to different results.
For fermions, as for the amplitude modulation, the EAR

is not a convenient way to probe the consequences of the
modulation. We follow here the same approach as in [18]
and show that for the phase modulation the measurement
of the DPR gives essentially the same information as the
EAR. We assume that H0 in Eq. (1) is described by the

Hubbard model, H0 ¼ �tH
P

�;hi;jic
y
i�cj� þU

P
jnj"nj#.

The number of doubly occupied sites is defined as NDðtÞ ¼
hVi=U, and can be rewritten as NDðtÞ ¼ 1

U ½hHðtÞi � hTi þ
M _F � hJi�, where T and V are the kinetic energy and
interaction terms in the above Hamiltonian. The produc-
tion rate is defined as the time average of _NDðtÞ for a

period: Pð!Þ ¼ !
2�

Rtþ2�=!
t dt0 _NDðt0Þ. A second-order per-

turbation expansion in FðtÞ gives for the productions rate
PPMð!Þ ¼ RPMð!Þ=U; (3)

which shows the direct relation between the EAR and the
DPR for the phase modulation. This shows that DPR gives
also access to the optical conductivity for these system.
The results (2) and the equivalence of the DPR to the

EAR (3) are thus our main proposal to use the phase
modulation of the optical lattice to measure the optical
conductivity of interacting systems in a cold atom context.
Let us now examine an example of the phase modulation

technique. For the sake of simplicity we take a repulsively
interacting 1D bosonic atom system at zero temperature.
The unperturbed Hamiltonian in Eq. (1) is written as

H0 ¼
Z

dx

�
c y

�
� @

2

2M
@2x ��þ VopðxÞ

�
c þ g

2
�2

�
; (4)

where VopðxÞ ¼ V0cos
2Qx is a 1D lattice potential, and g

an interaction parameter. The field c ðxÞ and �ðxÞ are,
respectively, the annihilation and density operators.
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For a shallow lattice potential, V0 � �, VopðxÞ can be

regarded as a perturbation, and then the Hamiltonian (4)

can be rewritten via the bosonization [34,35], c yðxÞ �ffiffiffiffi
��

p
e�i�ðxÞ and �ðxÞ � ��� @x’ðxÞ=�þ 2 �� cos½2� ��x�

2’ðxÞ�, where �� is the mean density of the system.
Retaining only the most relevant term generated by the
presence of VopðxÞ, one can obtain

Heff ¼ HTL þ �
Z

dx cos½2ðQ� � ��Þxþ 2’ðxÞ�; (5)

where HTL ¼ @v
2�

R
dx½Kð@x�ðxÞÞ2 þ K�1ð@x’ðxÞÞ2� is the

Tomonaga-Luttinger (TL) Hamiltonian. The phase fields
�ðxÞ and’ðxÞ represent, respectively, the phase and density
fluctuations of bosons. For an arbitrary repulsion K runs
from1 to unity as the interaction increases, andK ¼ 1 and
1 correspond to the Tonks gas and the noninteracting
bosons, respectively. Thus in the boson systems the low-
energy physics is mainly governed by the cosine term in
Eq. (5). Furthermore, the current is written as J ¼
vK

R
dx�ðxÞ where �ðxÞ is the canonically conjugate

momentum to ’ðxÞ. In the incommensurate case, i.e.,
� �� � Q, the cosine term in Eq. (5) vanishes, and the
effective theory is the TL liquid. For � �� ¼ Q, the model
(5) becomes a sine-Gordon model for which the cosine
term is relevant for K < 2, leading to a MI gap in the
excitation spectrum [35]. We will consider this last case
in what follows.

The conductivity can be calculated using the methods in
Refs. [35,36]. To determine the large frequency behavior of

the 1D current correlation function ~�R
J ð!Þ, we use the

memory function method, which gives correctly ~�R
J ð!Þ

for large frequency compared to the MI gap. The memory

function Mð!Þ � ! ~�R
J ð!Þ=½ ~�R

J ð0Þ � ~�R
J ð!Þ� can be ap-

proximated asMð!Þ � ½ ~�R
Fð0Þ � ~�R

Fð!Þ�=! ~�R
J ð0Þwhere

~�R
Fð!Þ is the retarded correlation function of FðtÞ ¼

½H0; JðtÞ�. From the Hamiltonian (5), F is given by F ¼
i2vK�

R
dx sin½2ðQ� � ��Þ þ 2’ðxÞ�, and Mð!Þ �!2K�3

is immediately computed. In the gapless (K > 2) case,

negligible Mð!Þ=! for small ! leads to ~�R
J ð!Þ /

!2K�5. As a result, it is found that the EAR spectrum for
small! and K > 2 behaves as RPMð!Þ / !2K�2. This is to
be compared with the amplitude modulation result [16]
RAMð!Þ / !2K�1 for weak lattices. A similar result is
obtained in the large-! limit for the massive case K < 2.
In the gapful case the cosine is relevant, and the conduc-
tivity, i.e., the phase modulation response will be zero
below the gap [35]. This example thus shows differences
between the phase and amplitude modulation. This differ-
ence has two origins: one is the trivial different prefactors
of the correlation functions (!3 for the phase modulation
and ! for the amplitude one). More importantly, and as
discussed above, the main difference comes from the per-
turbation coupling to two different operators: namely the
current for the phase modulation and the density for the
amplitude modulation in the shallow lattice limit.

We now consider a strong lattice potential. Then, the
system is well described by a lattice model: H0 is given
by the Bose-Hubbard Hamiltonian Heff ¼ T þ V where

T ¼ �tH
P

j½byjþ1bj þ H:c:� and V ¼ U
2

P
jnjðnj � 1Þ. byj

and nj are, respectively, the creation and number operators

for a bosonic atom at the jth site, and tH and U are the
hopping parameter and on-site interaction, respectively. For
an incommensurate filling, the ground state is in the gapless
superfluid (SF) phase. For filling of one particle per site, the
SF-MI transition occurs at U=tH ¼ 1:92 [37]. In the SF
phase, the low-energy physics is governed by the TL liquid
[35]. In the MI phase, an energy gap opens, and the low-
energy physics is no longer described by the TL liquid. The
lowest energy excitation above the gap is formed by a pair
of atoms at the same site (doublon) and an empty site
(holon). In the limit tH=U ! 0, the pair excitations are
N ðN � 1Þ-fold degenerate where N is the number of
lattice sites. For finite but small tH=U, the degenerate
energy levels split, and an energy band whose width is
about tH is formed. This band leads in the phase and
amplitude modulation spectrums to a peak around
! � U=@ as shown in Fig. 2.
Using degenerate perturbation theory [16], the EAR

spectrum can be calculated. Let jdRhri be a pair state
of the doublon and holon at Rth and rth site, respec-
tively, which is an exact eigenstate of V. We repre-
sent T in the Hilbert space spanned by jdRhri.
The eigenstate of T is jl; l0i ¼

ffiffi
2

p
N

PN
R¼1

PN�1
r¼1 �

eiðplRþarg½wpl
�rÞ sinðql0rÞjdRhRþri where wpl

¼ 1þ 2eipl ,

pl ¼ 2�l=N , and ql0 ¼ �l0=N (l ¼ 1; � � � ;N
and l0 ¼ 1; � � � ;N � 1). The corresponding eigenenergy
is El;l0 ¼ U� tHjwpl

j cosql0 . The retarded correlation

FIG. 2 (color online). The imaginary part of the current (a)–(c),
and the kinetic-energy (d)–(f) correlation functions in the bosonic
Mott insulator for tH=U ¼ 0:01 at zero temperature. The lattice
constant and @ have been taken to be unity. For 1D [(a) and (d)],
these two correlation functions are identical while they are quali-
tatively different for 2D [(b) and (e)] and for 3D [(c) and (f)].
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function of O for !> 0 is expressed as = ~�R
Oð!Þ ¼

��@
P

njhnjOj0ij2	ð@!� EnÞ where jni and j0i ¼Q
jb

y
j jvaci, respectively, denotes an intermediate state

and the MI ground state. Restricting the intermediate states
onto jl; l0i, both the amplitude and the phase modulation
can be computed. In the N ! 1 limit they turn out to be

identical and can be written as = ~�R
J ð!Þ ¼ �N �2tH

@Q2 �ð!Þ
and = ~�R

T ð!Þ ¼ �N @tH�ð!Þ [16] where �ð!Þ ¼ 4
3 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ½ð@!�UÞ=3tH�2
p

, as shown in Fig. 2. Therefore,
the appropriately scaled EAR, i.e., !�2RPMð!Þ, is identi-
cal to RAMð!Þ. This is a peculiar feature of the 1D MI
excitation spectrum, linked to the fact that in 1D the hole
and doublon cannot cross each other during their motion.
Thus qualitative difference must appear in the 2D and 3D

cases. We thus compute ~�R
J ð!Þ and ~�R

Tð!Þ for 2D and for
3D by using an diagrammatic approach. We consider a
doublon and holon with an infinite repulsive interaction
which implements the constraint that the two particles
cannot be at the same point except when they recombine.
For 1D this method is in full agreement with [16,38].
The result is also shown in Fig. 2. One clearly sees the
difference between the two modulations. Note that the
anomalous structures in the amplitude modulations are
related to the Van Hove singularities in the density of
states.

In summary, we have proposed in this Letter to use small
periodic phase modulation of an optical lattice to probe for
the current autocorrelation function. The consequences of
the modulation can be measured either by probing the
absorbed energy of the system (for bosons) or by measur-
ing the production rate of doubly occupied sites (for fer-
mions). Such a phase modulation probe gives direct access
to the frequency dependent conductivity of the system.
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