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The conventional definition of rogue waves in the ocean is that their heights, from crest to trough, are

more than about twice the significant wave height, which is the average wave height of the largest one-

third of nearby waves. When modeling deep water waves using the nonlinear Schrödinger equation, the

most likely candidate satisfying this criterion is the so-called Peregrine solution. It is localized in both

space and time, thus describing a unique wave event. Until now, experiments specifically designed for

observation of breather states in the evolution of deep water waves have never been made in this double

limit. In the present work, we present the first experimental results with observations of the Peregrine

soliton in a water wave tank.
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Today, there is widespread consensus on the existence of
rogue waves in the ocean [1–3]. A number of mechanisms
have been proposed to explain their unexpected emer-
gence. One of the essential elements in many of these
explanations is the idea that rogue waves could be related
to breather-type solutions of the underlying evolution
equations [4–6]. Such solutions could, in principle, de-
scribe a large wave that appears from nowhere and dis-
appears without a trace [7], a behavior that has been
reported for many known rogue wave events. One of the
most direct approaches to modeling the evolution of grav-
ity water waves is the use of the nonlinear Schrödinger
equation (NLS) [4,8,9], which is known to be good for
capturing weakly nonlinear evolution of narrow-band pro-
cesses. It is now already more than 30 years since the first
breather-type solution of the NLS was found by Ma [10].
This solitonlike solution breathes temporally but is spa-
tially localized. Taking the temporal period of this solution
to infinity, Peregrine, in 1983, gave a solution localized in
both space and time [11]. Akhmediev has found a family of
solutions [12,13] qualitatively different fromMa breathers.
These solutions breathe spatially but are localized in time.
Simply speaking, Akhmediev breathers are exact solutions
of the NLS that start from modulation instability of a plane
wave [13] (also known as a Benjamin-Feir [14–17] or
Bespalov-Talanov instability) and return to a plane wave
at the end of the evolution. Remarkably, the Peregrine
solution is also a limiting case of an Akhmediev breather
when the spatial period is taken to be infinite.

Surprisingly, to date, there does not seem to be any
published study focusing on direct experimental observa-
tion of any of the above described breather solutions in a
physical wave tank. Although a number of experimental
investigations have focused on the Benjamin-Feir instabil-
ity and focusing-defocusing issues (see, e.g., [18] for the
most recent work), none of these studies seems to have

focused on generating and studying breather solutions with
complete growth-decay cycles. The question of how well
breather solutions of the NLS would correspond to breather
solutions of physical surface gravity waves has thus gen-
erated discussions. But sound comparison between experi-
mental data and the NLS-based prediction is still lacking,
although such a comparison is generally considered to be
an important issue, since many authors have realized that
breather solutions might be closely related to rogue waves
in the ocean [4–7].
In the present study (i) we observe a Peregrine-type

breather solution experimentally in a water wave tank,
and (ii) we make a direct comparison of measured results
with the predictions of the analytical solutions of the NLS.
These comparisons bring us to the conclusion that our
experiment is the first observation of an isolated rogue
wave in a water wave tank.
Deep water waves can be described by the NLS, first

derived by Zakharov [16]:
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where t and x are time and longitudinal coordinates,
while k0 and !0 ¼ !ðk0Þ denote the wave number and
the frequency of the carrier wave, respectively. !0 and
k0 are linked by the dispersion relation of the linear deep
water wave theory, !0 ¼

ffiffiffiffiffiffiffiffi
gk0

p
, where g denotes the

gravitational acceleration. Accordingly, the group velo-
city is cg :¼ d!

dk jk¼k0 ¼ !0

2k0
. The surface elevation �ðx; tÞ

of the sea water is then given by �ðx; tÞ ¼
Refaðx; tÞ exp½iðk0x�!0tÞ�g.
A dimensionless form of the NLS [19],

iqT þ qXX þ 2jqj2q ¼ 0; (2)

is obtained from (1) by using the rescaled variables:
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Here, X is the coordinate in the frame moving with the
wave group velocity, and T is the time. Note that for a 2 R
the scaling transformation X ! aX, T ! a2T, q ! q

a

leaves the NLS (2) invariant. This implies that if qðX; TÞ
is a solution of (2), then so is aqðaX; a2TÞ. Initial value
problems involving the NLS can be solved by using the
inverse scattering transform [19]. On the other hand, there
are a number of exact solutions to the NLS that describe
various simpler physical situations. In particular, a number
of stationary solutions and nonstationary breather-type
solutions are known. Ma [10] found a breather solution of
(2), which is periodic in time and tends to the plane wave
solution as X ! �1:

qMðX;TÞ¼ cosð�T�2i’Þ�coshð’ÞcoshðpXÞ
cosð�TÞ�coshð’ÞcoshðpXÞ eð2iTÞ; (3)

� ¼ 2 sinhð2’Þ, p ¼ 2 sinhð’Þ and’ 2 R. Simply speak-
ing, Eq. (3) is a soliton on a background. A similar solution
for the NLS with an additional term has been found by
Kuznetsov [20]. Akhmediev [12,13] proved the existence
of a family of space-periodic solutions of (2) which ap-
proaches the plane wave as T ! �1:

qAðX;TÞ¼ coshð�T�2i’Þ�cosð’ÞcosðpXÞ
coshð�TÞ�cosð’ÞcosðpXÞ eð2iTÞ; (4)

where � ¼ 2 sinð2’Þ, p ¼ 2 sinð’Þ, and ’ 2 R. It is easy
to show that Eq. (4) is an exact solution of the NLS that
starts with modulation instability [13].

The Peregrine breather [11] can be understood as a
limiting case of the solutions (3) and (4) when ’ ! 0,
i.e., when the period of either solution becomes infinite:

qPðX; TÞ ¼ lim
’!0

qAðX; TÞ ¼ lim
’!0

qMðX; TÞ

¼
�
1� 4ð1þ 4iTÞ

1þ 4X2 þ 16T2

�
eð2iTÞ: (5)

A remarkable feature of this solution is that it is localized
in both space and time, and, as such, it describes unique
wave events. Namely, it breathes only once and describes a
single wave that appears from nowhere and disappears
without a trace. Figure 1 shows this solution, demonstrat-
ing clearly its spatial and temporal localization. Since the
Peregrine breather is the simplest solution of the NLS
which is localized in both space and time (the whole
hierarchy is much more complicated [7]), it has been
conjectured to sort of form a prototype for rogue waves,
in general, and also in the ocean [5,6]. However, there has
been no observational or experimental confirmation of this.
Observations of rogue waves in the ocean are rare and
therefore typically incomplete, and experiments in the

open ocean are dangerous and virtually impossible.
Experiments in water wave tanks, until now, do not seem
to have been conducted, either. Recent experiments in fiber
optics [21] are impressive but cannot be automatically
assumed to describe water waves.
We have performed the experiments in a 15 m�

1:6 m� 1:5 m water wave tank with 1 m water depth.
The tank is depicted schematically in Fig. 2. A single-
flap paddle activated by a hydraulic cylinder is located at
one end of the tank. To avoid wave reflections from the
opposite end of the tank, there is a wave-absorbing beach
there. The surface elevation of water at a given point is
measured by a capacitance wave gauge with a sensitivity of
1:06 V=cm and a sampling frequency of 500 Hz.
In order to describe experimental results, the Peregrine

breather solution has to be written in dimensional units.
With that aim, we apply the transformation [4]

aX ! ffiffiffi
2

p
k20a0ðx� cgtÞ; a2T ! � k20a

2
0!0

4
t: (6)

Thus, the solution becomes

FIG. 1 (color online). Peregrine breather solution (5). The
maximum amplitude, which occurs at X ¼ 0, T ¼ 0, is a factor
of 3 higher than the background carrier wave. Note also the
sharp drops in the amplitude (troughs) on either side of the
maximum.

FIG. 2 (color online). Schematic illustration of the water
wave tank.
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Before starting the first experiments, we expected that
the main experimental difficulty would be in determining
the flap kinematics. Ideally, the water motion created
by the flap should correspond to the initial conditions given
by the Peregrine breather solution at the starting side
of the tank. As a first step, the flap displacement was
chosen to be proportional to the surface height of the
breather solution to be generated. Surprisingly, the result-
ing wave dynamics, described below, was so close to the
analytical predictions that we concluded that the excitation
arrangement turned out to be perfectly sufficient for the
present study. All experiments described below were there-
fore performed with a flap motion which was directly
proportional to the surface elevation given by (7) at the
side where we define the initial conditions.

An important point is that the Peregrine soliton is lo-
cated on a background wave which provides energy for its
growth. The choice for the parameters of this wave is
dictated by the size of the tank. In all tests, the dimensional
far-field amplitude of the background was selected to be
a0 ¼ 0:01 m. The wavelength of the carrier has been set to
� ¼ 0:54 m, corresponding to a wave number of about
k0 ¼ 11:63 m�1 and an angular frequency of about
!0 ¼ 10:7 s�1. These values have been chosen in order
to ensure that the wavelength is large enough to ignore
effects of surface tension but still small enough to have
sufficient tank length to develop the wave evolution de-
scribed by Eq. (7). The wavelength also has to be small
enough for the whole arrangement to be sufficiently close
to the deep water limit.

Once the dimensional Peregrine breather solution is
defined and the background wave parameters are specified,
the theoretical spatiotemporal surface-height distribution
in dimensional units is given by

�ðx; tÞ ¼ RefqPðx; tÞ exp½iðk0x�!0tÞ�g: (8)

This formula is used both to determine the initial condi-
tions for the wave maker’s paddle motion and for compar-
ing measured surface-height time series with theoretical
predictions. The position where the rogue wave develops
its maximum amplitude depends on the initial conditions at
the wave maker. In order to demonstrate the evolution of a
nearly periodic Stokes wave towards the most extreme
wave state, we have initially chosen the position of the
maximum as far in the direction of wave propagation in the
channel as feasible. Figure 3 shows the results.

We arranged a carrier wave yielding the maximum
breather amplitude about 9 m along the tank. Water
surface-height data have been collected at ten positions,

with equal separations of 1 m, along the direction of wave
propagation. The measurements show that the wave is
essentially sinusoidal when close to the flap. This can be
seen clearly from the wave profile measured at 10 cm next
to the mean flap position. The flap motion produces a
periodic wave with about 1 cm amplitude, with a brief
increase of modulation above that level to about 1.4 cm in
the middle of the packet. Measurements at further dis-
tances from the wave maker show, surprisingly well, the
process of amplitude growth of this perturbation which
remains strongly localized and moves along with group
velocity.
The top curve in Fig. 3 is measured at the position where

we expect the growing rogue wave to have its maximum
amplitude. A closer look at this last time series at
x ¼ 9:1 m also shows that the almost perfect periodicity
of the background wave packet is slightly disturbed.
Namely, reflected waves from the absorbing beach at the
end of the tank can already be seen at the end of the wave
packet. However, they arrive at the position where the
measurements are taken only after the breather has already
passed. Interference with the waves reflected from the
absorbing beach makes it difficult in the present wave
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FIG. 3 (color online). Temporal evolution of the water surface
height at various distances from the wave maker.
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FIG. 4 (color online). Peregrine soliton measured at the grow-
ing, as well as decaying, stages of its evolution.
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tank to visualize the decay of the localized solution with
the same quality as its growth. To overcome this limitation
of our apparatus, we programed the motion of the wave
maker to create initial conditions that bring the extreme
state closer to the starting point of the wave propagation.
The results of these measurements are shown in Fig. 4.
Here we have chosen the position of the maximum ampli-
tude to be about 6.3 m from the wave maker. This choice
gives us a chance to watch the decaying stage of the rogue
wave. Indeed, the measurements taken at 9.3 m further
down the tank show that the amplitude of the perturbation
decreases.

Our experimental observation of the localization of the
wave energy in both space and time is a confirmation of the
existence of Peregrine solitons on the water surface, thus
confirming the existence of rogue waves ‘‘that appear from
nowhere.’’ The theoretical prediction from the Peregrine
solution suggests that the carrier wave surface elevation
should be amplified by a factor of 3. The measurements
come very close to this value. Figure 5 represents a surface-
height measurement at a position close to the presumed
maximum envelope amplitude. While the carrier wave has
an amplitude of about one centimeter, the surface height
of the ‘‘maximum wave’’ of the breather almost exactly
reaches a value of three centimeters.

By comparing the measured time series (solid line) with
the curve predicted by the Peregrine solution (dashed line),
the agreement can be considered to be reasonable. First, the
periodic wave state reveals a deep trough right next to the
breather’s maximum wave on either side of the wave crest.
The wave height from crest to trough here is almost
2.5 times larger than the average wave height around the
perturbation. This measure by itself satisfies the definition
of a rogue wave, for which the wave height should exceed
at least 2.2 times the significant wave height [22]. Second,
the return from the state of the extreme wave back to the
state of a periodic wave in the experiment is almost

symmetric in time, just as in theory. We attribute this
correspondence to the narrowness of the frequency spec-
trum in this particular problem. The spectrum of the
Peregrine soliton consists of the delta function defined by
the background monochromatic wave plus a small devia-
tion from it in the form of a triangular spectrum. We
confirmed, experimentally, that the whole spectrum re-
mains narrow as required for the NLS to be valid.
Nevertheless, some asymmetry in the surface elevation
can be noticed and will be the subject of future studies
taking into account extended modeling approaches.
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FIG. 5 (color online). Comparison of measured surface height
at the position of maximum rogue wave amplitude (solid line)
with the theoretical Peregrine solution (dashed line) evaluated at
X ¼ 0.
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