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The effect of self-affine roughness on solid contact is examined with molecular dynamics and

continuum calculations. The contact area and normal stiffness rise linearly with the applied load, and

the load rises exponentially with decreasing separation between surfaces. Results for a wide range of

roughness, system size, and Poisson ratio can be collapsed using Persson’s contact theory for continuous

elastic media. The compliance due to atomic-scale motion at the interface between solids has little effect

on the area and normal stiffness, but can reduce the total transverse stiffness by orders of magnitude. The

scaling of this effect with system size is discussed.
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The presence of roughness on a wide range of length
scales has profound effects on contact and friction between
experimental surfaces. Under a broad range of conditions
[1–6], the area of intimate contact between rough surfaces
Ac is orders of magnitude smaller than the apparent surface
area A0. As discussed below, this provides the most com-
mon explanation for Amontons’s laws that friction is
proportional to load and independent of A0. Because Ac

is small, the interfacial region is very compliant. In appli-
cations from jet engine mounts to microelectromechanical
systems, the interfacial compliance can significantly re-
duce the stiffness of joints formed by pressing two
components together [1,7].

In this Letter, we examine the effect of surface
roughness on the normal and transverse stiffness of
contacts between elastic solids using molecular dynam-
ics (MD) and continuum calculations. The results pro-
vide a numerical test of recent continuum theories [8,9]
and their applicability to real solids. The contact area
and normal stiffness approach continuum predictions
rapidly as system size increases. Continuum theory
also captures the internal deformations in solids under
lateral forces, but the total transverse stiffness may be
greatly reduced by atomic-scale displacements between
contacting atoms on the opposing surfaces. This makes
transverse stiffness a sensitive probe of the forces under-
lying friction and may help to explain unexpectedly
small experimental values [10].

The topography of many surfaces can be described as a
self-affine fractal [2,11]. Over a wide range of lengths, the
root mean squared (rms) change in height dh over a lateral
distance ‘ scales as a power law: dh� ‘H, where the
roughness or Hurst exponent H is typically between 0.5
and 0.9. Greenwood and Williamson (GW) considered the
peaks of rough landscapes as independent asperities and
found that Ac rose linearly with normal load FN for non-
adhesive surfaces [2]. This explains Amontons’s laws if
there is a constant shear stress at the interface. A linear
scaling of area with load is also obtained from Persson’s

scaling theory, which includes elastic coupling between
contacts approximately [3,12].
Dimensional analysis implies that the linear relation

between load and area has the form

AcE
0 ¼ �FN=

ffiffiffiffiffiffiffiffiffiffiffiffi

jrhj2
q

; (1)

where a modulus like the contact modulus E0 is the only
dimensional quantity characterizing the elastic response,
and the rms slope the simplest dimensionless quantity
characterizing the roughness. Numerical solutions of the
continuum equations [4,6] show that � is near 2. Results for
different H and Poisson ratio � lie between the analytic

predictions of GW,
ffiffiffiffiffiffiffi

2�
p � 2:5, and Persson,

ffiffiffiffiffiffiffiffiffi

8=�
p � 1:6.

One advantage of Persson’s model is that, as in numerical
results, Ac=FN is constant over a much larger range of
loads than GW [13]. Another is that it captures [9] the
power law scaling of correlations in contact and stress that
was found in numerical studies [14,15].
The normal stiffness is related to the change in average

surface separation u with load. Experiments [16,17] and
calculations [5,8,18] show an exponential rise in load with
decreasing u, FN ¼ cA0E

0 exp½�u=�hrms�, where hrms is
the rms variation in surface height and � a constant of
order 1. Differentiating leads to an expression for the
normal interfacial stiffness:

kIN ¼ �dFN=du ¼ FN=�hrms: (2)

For self-affine surfaces, this interfacial stiffness decreases
as h�1

rms � L�H with increasing system size L. Our simula-
tions test this scaling and show that � is nearly constant.
They also examine the connection between this normal
stiffness and the transverse stiffness kIT measured at forces
lower than the static friction [19].
We consider nonadhesive contact of a rigid rough solid

and a flat elastic substrate. This can be mapped to contact
of two rough, elastic solids in continuum theories [2,3].
The mapping is only approximate for atomic systems
[20,21], but reduces the parameter space. Since thermal
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fluctuations are usually ignored in continuum theory, we
consider the zero temperature limit.

In our MD simulations, substrate atoms separated by
r interact with a Lennard-Jones (LJ) potential: ULJ ¼
4�½ð�=rÞ12 � ð�=rÞ6�, where � and � are the bonding
energy and diameter. To speed calculations, the poten-
tial and force are interpolated smoothly to zero at
rc ¼ 1:8� and energy minimization is used to find
stable states [22]. Single-asperity simulations yield an
effective contact modulus E0 ¼ 63�=�3 [20]. The sub-
strate is face-centered-cubic and forms a cube of edge
L with a (100) top surface. Periodic boundary condi-
tions are applied in the plane of the top surface and the
bottom is held fixed. Continuum calculations used the
same substrate dimensions but obtained the displace-
ments using a Green’s function (GF) method [6] with
the GF for an isotropic, continuous medium with
Poisson ratio � ¼ 0 or 0.35.

The rigid surface contained atoms on a square or trian-
gular grid. The nearest-neighbor spacing d0 was chosen to
prevent commensurate locking with the substrate [23,24].
The interaction between substrate and rigid atoms is a LJ
potential with length �0 truncated at the energy minimum,

21=6�0. This produces the purely repulsive interactions
assumed in Persson’s theory. Rigid atoms are displaced
vertically to coincide with a self-affine fractal surface of
the desired H. Surfaces with roughness on wavelengths
from lmin ¼ 5:9� to lmax ¼ L were generated as in

Ref. [14]. The rms slope
ffiffiffiffiffiffiffiffiffiffiffiffijrhj2p ¼ 0:1 for the results

shown. Consistent results were obtained for slopes from
0.05 to 0.15. Slopes of 0.2 or greater led to plastic defor-
mation in MD simulations. Large slopes also led to plas-
ticity in previous continuum calculations [5].

In all cases studied, Ac rises linearly with FN . Moreover,
the value of � approaches previous continuum results [4,6]
as system size increases. The stress and contact correlation
functions from the MD calculations also show the same
power law scaling with wave vector found in continuum
calculations and Persson’s theory [9,15].

Figure 1 shows the variation of FN with interfacial
separation u for several L and H ¼ 0:5 and 0.8. In all
cases, FN rises exponentially over a range of loads that
corresponds to fractional contact areas between 1% and
10%. Statistics are too poor at lower areas and nonlinear
corrections to Eq. (1) are seen at larger areas [4]. The linear
fits to all results have the same slope, corresponding to
� ¼ 0:48, and best fit values for all H and L studied differ
by less than 10% from this value. GF results were at the
higher end of this range and showed no change as �
increased from 0 to 0.35. Earlier continuum calculations
[5], elastic atomic calculations [18], and experiments [17]
were consistent with � � 0:4. This represents a compelling
success of Persson’s approach, and raises the question of
whether �may have a unique value in the thermodynamic,
isotropic limit.

The normal stiffness from Eq. (2) includes a component
from the increase in contact area with load as well as the
change in force at fixed area. There is also an atomic-scale
compliance kIa associated with changes in the separation
between contacting atoms on opposing surfaces that is
generally neglected in continuum theory. To isolate the
stiffness associated with deformation within the substrate
at fixed contact area kIs, we applied constraints directly to
the substrate atoms that contacted at a given load. The
normal and transverse stiffness were obtained from the
linear change in force produced by small, uniform normal
or transverse displacements of these contacting atoms. The
contribution from the bulk response was subtracted so that
the stiffness reflects the change in surface separation u or
transverse surface translation uT . This approach is straight-
forward to implement in experiments and was found to be
consistent with direct averaging of atomic separations.
Figure 2(a) shows the scaled normal interfacial stiffness

kIsNhrms=A0E
0 as a function of the dimensionless load

FN=A0E
0 used to find the contacting atoms. Once again,

results for all systems show the same behavior, and the
stiffness rises linearly with load as predicted by Eq. (2).
The points lie slightly above the dashed line corresponding
to � ¼ 0:48 due to small deviations from the analytic form
of Eq. (2). One might expect kIsN to be substantially less

than the total stiffness because it does not include the
stiffness from increases in contact area. However, the two
quantities are nearly the same because newly contacting
regions carry the smallest forces.
The incremental response of an ideal elastic solid does

not depend on any preexisting deformation. This implies
that we should obtain the same stiffness by displacing the
same set of atoms on the initial undeformed surface. Direct
evaluation of the stiffness in this way gave slightly lower
values than Fig. 2, with the difference increasing from the
numerical uncertainty to about 15% with increasing FN.

FIG. 1. Logarithm of load as a function of ðu0 � uÞ=hrms, and
linear fits corresponding to � ¼ 0:48. The separation at first
contact, u0, is shifted slightly for each curve to prevent overlap.
Atomistic results are for H ¼ 0:5 with L ¼ 378:4� (circles),
189:2� (squares), and 94:6� (triangles) and for H ¼ 0:8 with
L ¼ 189:2� (pluses) and 94:6� (crosses). Filled triangles are for
a GF simulation with L ¼ 142:7� and � ¼ 0.
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This provides an estimate of the contribution that anhar-
monic effects may make to the stiffness of real materials at
the rms slope used here.

The above results imply that the stiffness of elastic solids
at fixed contact area is uniquely determined by the distri-
bution of contacting points and not the surface roughness
or load distribution. This conclusion may seem at odds
with Eq. (2), since the contact area has no independent
connection to load or surface roughness. The resolution is
that variations in load and roughness cancel. If the response
is linear, one can scale hrms and FN by the same factor
and the contact area will be unchanged. Indeed one can
combine Eqs. (1) and (2) to eliminate FN:

k�N � kIsN
A0E

0
hrms
ffiffiffiffiffiffiffiffiffiffiffiffijrhj2p

¼ 1

��

Ac

A0

: (3)

For a self-affine surface, the ratio hrms=
ffiffiffiffiffiffiffiffiffiffiffiffijrhj2p /

ðlmax=lminÞHlmin depends only on the small and large scale
cutoffs in roughness, independent of the rms slope.

Figure 3(a) shows the scaled stiffness k�N vs area. The
results were obtained by displacing atoms from their posi-
tions on the initial flat surface to eliminate anharmonic
effects. Results for all systems collapse onto a common
straight line, providing clear evidence for the direct con-
nection between stiffness and contacting area. The slope is
near unity as expected from the separate values of � and �.

All of our atomic simulations show kIsT =k
Is
N � 1. This is

surprising given that Mindlin [19] and recent work [25]
predict kIT=k

I
N ¼ 2ð1� �Þ=ð2� �Þ � 1. However, this

work assumed isotropic elasticity and the predicted ratio
of unity is consistent with our GF results for an isotropic
solid with � ¼ 0. One measure of the anisotropy of the
LJ crystal is that the ratio c44=E

0 � 0:57, while it is
ð1� �Þ=2 � 1=2 for an isotropic solid. The higher shear
modulus is consistent with a higher transverse stiffness

than expected. In general, the total elastic energy stored

in the interface is �q
~fð� ~qÞG$ð ~qÞ ~fð ~qÞ=2 where G is the

Green’s function matrix relating displacements to forces
f [6]. The stiffness ratio can be obtained by averaging the
diagonal components of qGð ~qÞ corresponding to normal
and transverse displacements over q̂ and assuming the
same power spectrum describes the respective forces.
This ratio agrees with Mindlin’s result for isotropic sys-
tems, and captures changes with crystal anisotropy.
As noted above, kIsN and kIsT reflect the stiffness associ-

ated with deformation inside the substrate at constant Ac,
and there are additional interfacial stiffnesses kIaN and kIaT
associated with the relative motion of atoms on opposing
surfaces. The substrate and atomic compliances add in
series, so the total interfacial stiffness kItJ ¼ ½1=kIsJ þ
1=kIaJ ��1 for J ¼ N or T. As in previous studies of
single-asperity contacts [20,23,24], we find atomic-scale
deformations have almost no effect on the total normal
stiffness of multiasperity contacts, but qualitatively change
the transverse stiffness.
The value of kIaN is large because the repulsive forces on

all contacting atoms add coherently to prevent interpene-
tration. One can estimate kIaN � AcE

0=�, assuming that the
interfacial atoms act like a piece of the substrate with area
Ac and height equal to the layer spacing��. This is larger

than kIsN by a factor of order hrms=�
ffiffiffiffiffiffiffiffiffiffiffiffijrhj2p 	 1, explain-

ing why the total normal stiffness (Fig. 1) is consistent with
the stiffness from compression of the elastic substrate
alone (Fig. 2).
In contrast, the contributions to transverse stiffness from

different atoms rarely add coherently. There is a direct

20x

(a)

(b)

FIG. 3. The scaled (a) normal stiffness and (b) transverse stiff-
ness as a function of Ac=A0. Results for k

Is are shown for H ¼
0:5 (open symbols) and H ¼ 0:8 (filled symbols) with L ¼
189:2� (circles), L ¼ 94:6� (squares), or L ¼ 47:3� (tri-
angles). Pluses show GF results for � ¼ 0. Total transverse
stiffness kItT , multiplied by 20 to make visible, is shown for L ¼
189:2� and rigid surfaces with a square lattice, d0 ¼ 0:37�, and
H ¼ 0:5 (
 ) or H ¼ 0:8 (hexagons), or a triangular lattice with
d0 ¼ 21=6� and H ¼ 0:8 ( � ). Dashed lines have slope 0.87.

(a)

(b)

FIG. 2. The scaled (a) normal stiffness and (b) transverse stiff-
ness as a function of FN=A0E

0. Results are for H ¼ 0:5 (open
symbols) and H ¼ 0:8 (filled symbols) with L ¼ 189:2�
(circles), L ¼ 94:6� (squares), or L ¼ 47:3� (triangles).
Dashed lines have slope 1=� with � ¼ 0:48.
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analogy to friction forces in single-asperity contacts
[20,23,24], where the resistance to lateral sliding rises
sublinearly with area unless the surfaces share a common
periodicity. In Fig. 3(b) the total transverse interfacial
stiffness is 2 orders of magnitude lower than kIsT . Results
for different H are nearly the same, but the stiffness
changes significantly with the lattice spacing d0 and surface
structure (square vs triangular). The transverse stiffness is
also affected by lmin, L and the interfacial potential.

Our kIaT results for a wide range of parameters fall into
two categories. The stiffness adds coherently in special
cases, such as for commensurate surfaces with the same
lattice structure. As for the normal stiffness, the contribu-
tion from kIaT is then proportional to Ac and becomes
irrelevant as system size L increases. For the more usual
case where the different periodicity of the surfaces prevents
coherent locking, kIaT grows sublinearly with Ac and domi-
nates the total stiffness at large L and Ac. Data for the cases

in Fig. 3(b) satisfy kIaT ¼ cA1=2
c E0, where E0 is included to

make c dimensionless and there are statistical fluctuations
about the fit as new asperities contact. The value of c was
independent of L and H, but larger for the square lattice
than the triangular lattice. The substrate stiffness kIsT /
LHAc [Eq. (3)] grows more rapidly with L and Ac and
thus becomes irrelevant in large systems.

Two aspects of the above results should be noted. The

first is that the scaling kIaT / A1=2
c is consistent with our

observation that different connected patches contacted at
random lateral registries because they could not displace
laterally to optimize their position. Scaling theories predict
that substrate stiffness prevents relative lateral displace-
ments for L less than a correlation length that is estimated
to be comparable to the size of macroscopic samples [26].
The second point is that the same arguments predict that

the friction force scales as A1=2
c and this is not usually found

in experiments. This suggests that another mechanism
[24,27], such as debris or plasticity, may be important to
both interfacial stiffness and friction in experimental
samples. Further studies of interfacial stiffness may thus
provide valuable information about friction mechanisms as
well as explain the low ratio of transverse to normal stiff-
ness frequently observed in experiment [10].

In conclusion, atomic-scale simulations were used to
study contact between surfaces with roughness on a wide
range of scales. The results for area and normal stiffness
are consistent with Persson’s continuum theory down to
relatively small scales, even though the solid is not con-
tinuous or perfectly elastic. The area and internal stiff-
nesses of systems with a range of H, L, and � show the
linear scaling predicted in Eqs. (1)–(3) with nearly constant
values of � and �. The internal stiffnesses were shown to
depend only on the geometry of the contacting region.
Atomic-scale displacements between contacting atoms

have little effect on the normal stiffness, but can change
the transverse stiffness by orders of magnitude. This
sensitivity makes transverse stiffness a promising probe
of the atomic-scale interactions that underlie friction.
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[12] M.H. Müser, Phys. Rev. Lett. 100, 055504 (2008).
[13] G. Carbone and F. Bottiglione, J. Mech. Phys. Solids 56,

2555 (2008).
[14] S. Hyun and M.O. Robbins, Tribol. Int. 40, 1413 (2007).
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[27] G. He, M.H. Müser, and M.O. Robbins, Science 284,

1650 (1999).

PRL 106, 204301 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
20 MAY 2011

204301-4

http://dx.doi.org/10.1098/rspa.1966.0242
http://dx.doi.org/10.1098/rspa.1966.0242
http://dx.doi.org/10.1103/PhysRevLett.87.116101
http://dx.doi.org/10.1103/PhysRevE.70.026117
http://dx.doi.org/10.1103/PhysRevE.70.026117
http://dx.doi.org/10.1016/j.jmps.2005.06.008
http://dx.doi.org/10.1016/j.jmps.2005.06.008
http://dx.doi.org/10.1209/0295-5075/77/38005
http://dx.doi.org/10.1209/0295-5075/77/38005
http://dx.doi.org/10.1007/BF02320613
http://dx.doi.org/10.1007/BF02320613
http://dx.doi.org/10.1103/PhysRevLett.99.125502
http://dx.doi.org/10.1088/0953-8984/20/31/312001
http://dx.doi.org/10.1088/0953-8984/20/31/312001
http://dx.doi.org/10.1016/j.wear.2009.08.022
http://dx.doi.org/10.1098/rspa.1957.0214
http://dx.doi.org/10.1103/PhysRevLett.100.055504
http://dx.doi.org/10.1016/j.jmps.2008.03.011
http://dx.doi.org/10.1016/j.jmps.2008.03.011
http://dx.doi.org/10.1016/j.triboint.2007.02.003
http://dx.doi.org/10.1088/0953-8984/20/35/354013
http://dx.doi.org/10.1088/0953-8984/20/35/354013
http://dx.doi.org/10.1021/jp0602880
http://dx.doi.org/10.1088/0953-8984/21/1/015003
http://dx.doi.org/10.1088/0953-8984/21/1/015003
http://dx.doi.org/10.1103/PhysRevLett.100.024303
http://dx.doi.org/10.1103/PhysRevLett.100.024303
http://dx.doi.org/10.1038/nature03700
http://dx.doi.org/10.1038/nature03700
http://dx.doi.org/10.1007/s11249-009-9453-3
http://dx.doi.org/10.1006/jcph.1995.1039
http://lammps.sandia.gov/
http://lammps.sandia.gov/
http://dx.doi.org/10.1016/0043-1648(93)90207-3
http://dx.doi.org/10.1103/PhysRevLett.86.1295
http://dx.doi.org/10.1103/PhysRevLett.86.1295
http://dx.doi.org/10.1088/0953-8984/23/8/085001
http://dx.doi.org/10.1088/0953-8984/23/8/085001
http://dx.doi.org/10.1016/S0038-1098(99)00034-4
http://dx.doi.org/10.1016/S0038-1098(99)00034-4
http://dx.doi.org/10.1126/science.284.5420.1650
http://dx.doi.org/10.1126/science.284.5420.1650

