
Detecting Quantum States with a Positive Wigner Function beyond Mixtures of Gaussian States

Radim Filip and Ladislav Mišta, Jr.
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We propose a criterion giving a sufficient condition for quantum states of a harmonic oscillator not to be

expressible as a convex mixture of Gaussian states. This nontrivial property is inherent to, e.g., a single-

photon state and the criterion thus allows one to reveal a signature of the state even in quantum states with

a positive Wigner function. The criterion relies on directly measurable photon number probabilities and

enables detection of this manifestation of a single-photon state in quantum states produced by solid-state

single-photon sources in a weak coupling regime.
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Nonclassical states of a quantum harmonic oscillator [1]
are an indispensable resource for quantum technology.
The basic nonclassical states, squeezed states [2], are
Gaussian; i.e., their Wigner function [3] is Gaussian, and
they can be prepared by a unitary operation generated by a
quadratic bosonic Hamiltonian. Squeezed states are a re-
source for the preparation of any Gaussian state and im-
plementation of any Gaussian operation. However, a more
primitive resource exists in the form of a single-photon
state. If it is ideal it allows for the construction of any
quantum state and more diverse quantum operations.
However, a single-photon state has a non-Gaussian
Wigner function, reaching negative values as a conse-
quence of higher-order quantum nonlinearity in the state
preparation. Compared to the squeezed state, the single-
photon state exhibits strong anticorrelation, directly reveal-
ing its particle features. Recently, solid-state sources
became very promising potential sources of single photons
on demand owing to their scalability and integrability [4].

It is still a challenge for the solid-state sources to verify
that the produced quantum states possess at least some of
the nontrivial properties of the desired single-photon state
that go beyond the framework of experimentally well
managed mixtures of Gaussian states. According to defi-
nition, an arbitrarily small value of the second-order cor-
relation function [5] can also be achieved by Gaussian
states. The anticorrelation parameter � [6], describing
the particle properties of single-photon states irrespective
of losses, proves for �< 1 only that the state is incompat-
ible with any mixture of coherent states. The only approach
used to date to verify the nontrivial non-Gaussian character
of quantum states going beyond mixtures of Gaussian
states utilizes the negativity of their Wigner function.
The solid-state sources, however, emit light into a free
space which causes a large attenuation of the produced
single-photon state before it reaches the verifying detector
(weak coupling regime). This strong loss between the
emitter and the detector then causes the Wigner function
of the state to become positive and the criterion based on its
negativity cannot be used.

It is therefore imperative to develop another criterion
that would also detect states with a positive Wigner func-
tion that still cannot be prepared solely using Gaussian
states and operations. For this purpose it is natural to first
characterize the set of all states that can be prepared in this
way and that are therefore not interesting for the further
development of single-photon sources. Obviously, these
are the states that can be expressed as a convex mixture
of Gaussian states

�c ¼
Z

P ð�Þj�ih�jd�; (1)

where P ð�Þ is an arbitrary normalized probability density
of the parameters � labelling pure Gaussian states j�i ¼
Sðr; c ÞDð�Þj0i [7], where j0i is the vacuum state, Sðr; c Þ
is the squeezing operator (r is the squeezing parameter and
c is the phase of the squeezing) and Dð�Þ is the displace-
ment operator (� is the complex amplitude of the displace-
ment). Note, that any state of the form (1) can be created
using only quadratic Hamiltonians, Gaussian states, and
Gaussian measurements. Specifically, using Gaussian uni-
tary operations, discarding the subsystems and homodyne
detection, one can implement any operation preserving
Gaussian states, the so called trace-decreasing Gaussian
completely positive map [8]. If, in addition, we allow
classical mixing of operations, then we can get from
Gaussian input states at most a state of the form (1). The
impossibility to express a state as a mixture (1) therefore
reveals that its creation was assisted by tools beyond this
framework. A broad variety of distributions P ð�Þ makes
the border of the set of states (1) complex. Therefore, we
focus on finding a criterion designed for the basic resource
Fock states leaving general properties of the border for
further research.
In this Letter, we propose a sufficient condition for a

quantum state � not to be expressible in the form (1). The
criterion uses directly measurable probabilities pnð�Þ of
finding the nth Fock state in the analyzed state. First, we
answer a basic question as to how high the probability for a
given Fock state can be from mixtures of Gaussian states.

PRL 106, 200401 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
20 MAY 2011

0031-9007=11=106(20)=200401(4) 200401-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.200401


Next, focusing on single-photon emitters we design a
stronger criterion proving that a realistic single-photon
source in a weak coupling regime generates states beyond
the form (1).

The Fock states are a general example of highly non-
classical non-Gaussian quantum states. The nth Fock state
jni is an eigenstate of the particle number operator N
corresponding to the eigenvalue n. It was already shown
that enough squeezed and displaced Gaussian state can
reach arbitrarily small variance h�2Ni ¼ hN2i � hNi2, if
the mean hNi is not restricted [5]. This implies that it is
impossible to find the desired sufficient condition based on
this variance. On the other hand, a single particle never
splits at a beam splitter as proof of the fundamental integ-
rity of the particle. In other words, using a single-particle
resolving detector, the probability of detecting a single
particle is unity. Instead of the variance h�2Ni, a simple
criterion testing incompatibility of a state � with
the decomposition (1) could be based on the probability
pnð�Þ ¼ hnj�jni. Clearly, the probability satisfies
pnð

R
P ð�Þj�ih�jd�Þ ¼ R

P ð�Þpnðj�ih�jÞd�. If there is an
upper bound pmax

n ¼ pnðj�maxih�maxjÞ for all pnðj�ih�jÞ,
where j�maxi maximizes probability jhnj�ij2, then we
know that pnð�cÞ � pmax

n for all �c. In other words, it is
enough to find pmax

n by maximizing pn over pure Gaussian
states. The found maximum is then a lower bound for the
states which are not just a mixture of Gaussian states. Now,
the main question is the following: Are the novel bounds
able to detect states with positive Wigner functions incom-
patible with decomposition (1)?

For pure Gaussian states the probability pn reads [7]

pnðj�ih�jÞ ¼
��������

1ffiffiffiffiffiffiffiffiffi
n!�

p
�
�

2�

�
n=2

Hn

�
�ffiffiffiffiffiffiffiffiffiffi
2��

p
�

� exp

�
� j�j2

2
þ �2��

2�

���������
2

; (2)

where � ¼ j�j expði�Þ, � ¼ coshr, � ¼ sinhr expðic Þ,
and Hn denotes Hermite polynomials. The bound pmax

n

can be found by optimizing (2) over j�j, r and the com-
pound phase� ¼ �� c =2. In the simplest case n ¼ 1 the

maximal probability is pmax
1 ¼ 3

ffiffi
3

p
4e � 0:477 889 and it is

achieved for � ¼ 0, �, (� �
2 ,

�
2 ), r ¼ ln3

2 , (� ln3
2 ) and

j�j2 ¼ 2. The corresponding squeezed state has position
X and momentum P variances h�2Xi ¼ 1=12 and h�2Pi ¼
3=4 (vacuum noise variance is 1=16), respectively, and it is

displaced along X axis to the point hXi ¼ ffiffiffiffiffiffiffiffi
2=3

p
. The pn

distribution of this optimal state is depicted in Fig. 1.
We see that the probability of a single-particle state domi-
nates which reveals that this property itself does not
suffice to ensure that a state originates from a higher-order
nonlinear interaction. For n ¼ 2, the maximal probability

is pmax
2 ¼ 4

9

ffiffiffi
2

p ð3þ 2
ffiffiffi
3

p Þ expð� 3
2 �

ffiffi
3

p
2 Þ � 0:381 319. It

appears for � ¼ 0, �, (� �
2 ,

�
2 ), r ¼ arccosh

ffiffi
3
2

q
,

(� arccosh
ffiffi
3
2

q
) and j�j2 ¼ 3

2 ð2þ
ffiffiffi
3

p Þ. It corresponds to

the squeezed state with variances h�2Xi ¼ ð2� ffiffiffi
3

p Þ=4
and h�2Pi ¼ ð2þ ffiffiffi

3
p Þ=4 displaced to point hXi ¼ ffiffiffiffiffiffiffiffi

3=2
p

.
Maximization of pn for higher n is a complex task that

can be solved analytically only partially. Therefore, we
first find pmax

n (up to four digits) for a few higher Fock
states numerically, see Table I. For analytical optimization
it is convenient to express the distribution (2) as pn ¼
fgnhn=ð2nn!Þ, where f ¼ exp½�j�j2ð1� tanhr cos	Þ�,
where 	 ¼ 2�, gn ¼ ðtanhrÞn= coshr and hn ¼ jHnðzÞj2,
where z ¼ j�j expði	=2Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinhð2rÞp
. Maximization of pn,

n � 1, with respect to variables 	 2 h0; 2�Þ, j�j2 > 0,
r > 0 requires us to solve the extremal equations
@pn=@x ¼ 0, x ¼ 	, j�j2, r that lead to the following set
of equations:

sn ¼ �j�j2 tanhr sin	hn; (3)

qn ¼ j�j2ð1� tanhr cos	Þhn; (4)

qn ¼
�j�j2 cos	

cothr
þ n� sinh2ðrÞ

�
hn

coshð2rÞ ; (5)

where sn ¼ �@hn=@	 and qn ¼ j�j2@hn=@j�j2 ¼
�½tanhð2rÞ=2�@hn=@r. Combining Eqs. (4) and (5) one
finds that either hn ¼ 0 which gives minimal pn ¼ 0 or

j�j2 ¼ n� ðnþ 1Þtanh2ðrÞ
1þ tanh2ðrÞ � 2 tanhr cos	

: (6)

Note that j�j2 � 0 only if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðnþ 1Þp � tanhr. Since

hn ¼ 2
X½n=2�
N¼0

ð�1ÞNCðn;NÞTNðcos	Þ � Cðn;0Þ; (7)
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FIG. 1 (color online). Photon number distribution and Wigner
function density plot of the optimal pure Gaussian state max-
imizing the probability of finding Fock state j1i.

TABLE I. Maximal probabilities pmax
n .

n pmax
n j�maxj2 rmax n pmax

n j�maxj2 rmax

1 0.4779 2 0.5493 5 0.2792 21.1232 0.8088

2 0.3813 5.5981 0.6584 6 0.2623 27.3948 0.8391

3 0.3326 10.1188 0.7243 7 0.2488 34.0822 0.8647

4 0.3014 15.3351 0.7717 8 0.2376 41.1522 0.8868
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where TNðcos	Þ ¼ cosðN	Þ is the Chebyshev polynomial
of the first kind and

Cðn;NÞ ¼ X½n=2��N

j¼0

ðn!Þ2ð2jzjÞ2ðn�N�2jÞ

j!ðN þ jÞ!ðn� 2jÞ!ðn� 2N � 2jÞ! ; (8)

one gets sn ¼ �@hn=@	 ¼ tn sin	, where

tn ¼ 2
X½n=2�
N¼0

ð�1ÞNCðn;NÞNUN�1ðcos	Þ; (9)

where UN�1ðyÞ ¼ ð1=NÞðdTNðyÞ=dyÞ is the Chebyshev
polynomial of the second kind. Substituting the obtained
expression for sn into Eq. (3) we see that either 	 ¼ 0 or

tn þ j�j2 tanhrhn ¼ 0: (10)

Equations (4), (6), and (10) form the basis for finding one
set of the candidates for the extremes of probability pn.
Eliminating j�j2 from Eqs. (4) and (10) using relation (6)
we arrive at the set of two polynomial equations in
two variables cos	 and tanhr whose real solutions satisfy-

ing, in addition, conditions j cos	j � 1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðnþ 1Þp

>
tanhr > 0 comprise one set of the candidates. The other
set of candidates satisfies 	 ¼ 0 which simplifies the
relation (6) to

j�j2 ¼ e2r½n� sinh2ðrÞ�: (11)

The remaining equation for tanhr can be found as
follows. Summing Eq. (4) with Eq. (3) multiplied by
imaginary unit i, taking into account the relation qn þ
isn ¼ zðdHnðzÞ=dzÞH�

nðzÞ, dividing the obtained equation
by H�

nðzÞ � 0 and using the relation dHnðzÞ=dz ¼
2nHn�1ðzÞ we get

2nzHn�1ðzÞ ¼ j�j2ð1� tanhrei	ÞHnðzÞ: (12)

Setting here 	 ¼ 0 and substituting for j�j2 from Eq. (11)
we arrive at the remaining polynomial equation in tanhr
the real roots of which fulfilling, in addition, conditionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðnþ 1Þp

> tanhr > 0 determine the other set of candi-
dates for extremes. Finding the roots (generally numeri-
cally), calculating pn for them with the help of Eq. (11) and
picking up r and j�j2 corresponding to the largest pn we
perfectly reproduce the values of pmax

n , j�maxj2 and rmax

from Table I. The agreement of the partially analytical
results with numerical results brings us to the conjecture
that for a given n a global maximum of pn is achieved by a
pure Gaussian state with phase 	 ¼ 0, the absolute value of
the displacement � given by Eq. (11) and squeezing r such
that tanhr is a proper root of Eq. (12).

Previous results reveal that the global maximum of pn

over all pure Gaussian states can be found analytically for
n ¼ 0, 1, 2. For n � 3 we have to solve the relevant
equations numerically. Alternatively, we can eliminate
j�j from pn using Eq. (6), plot the obtained pn as a
function of 	 and tanhr, and identify the maximum

visually. Using the graphical method we can once again
independently verify our conjecture.
As a testing physical example we can discuss a damping

channel with the transmissivity 
 applied to the Fock

state jni. For n ¼ 1, the obtained state �ð
Þ
1 ¼
j1ih1jþ

ð1�
Þj0ih0j has for pmax
1 ¼ 0:477 889<
< 0:5 a posi-

tive Wigner function which is not just a mixture of
Gaussian states. Thus we arrived at a very intuitive and
experimentally feasible criterion detecting a relatively
narrow region of states that, however, enlarges with in-
creasing n. For the Fock state j2i propagating through the
same channel the resulting state 
2j2ih2j þ ð1� 
Þ2j0i�
h0j þ 2
ð1� 
Þj1ih1j has the same lower bound 
 ¼ 0:5
for the negativity of the Wigner function. Our criterion
proves that the state is not a mixture of Gaussian states

already for 
> 0:394 855 ¼ ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2pmax

1

p Þ=2. This

demonstrates that higher Fock states subject to loss are
better for identification of the high-order nonlinearity
underlying their creation.
Rather than checking the individual Fock states

criteria, we combine them into a single criterion via a
witness operator �. The sufficient condition detecting
states beyond the form (1) then corresponds to P �
Trð��Þ> Pmax. Our aim is to find as low as possible
Pmax to detect noisy versions of the typically experimen-
tally prepared Fock state j1i. We propose two basic witness
operators �1 and �a of the following forms. For �1 ¼
j1ih1j �P

n¼2jnihnj, the threshold is Pmax
1 ¼ 0:349 409.

Further improvement is reached for �a ¼ j1i�
h1j � a

P
n¼2jnihnj, where the parameter a >�1 enables

us to find a better bound. Maximization of Pa ¼ Trð�a�Þ
over the pure Gaussian states yields

Pmax
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4að3þ 2aÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 8a
pq

exp

�
2

1� ffiffiffiffiffiffiffiffiffi
9þ8a

p
�

8
ffiffiffi
2

p ð1þ aÞ
� ð3þ 4aþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 8a
p Þ � a; (13)

which is a monotonically decreasing function of a with the

limit lima!1Pmax
a ¼ 0. For mixture �

ð
Þ
1 giving Pa ¼ 
 it

is always possible to find a small enough to prove that for
any 0<
< 1 this state cannot be expressed as a mixture
of Gaussian states, although for 
< 0:5 its Wigner func-
tion is positive.
Practical applicability of the bound (13) can be demon-

strated on a realistic single-photon source [4]. In the weak
coupling regime the source produces a single photon to
many modes from which only a single mode is effectively
selected with the overall efficiency 
. Assume that all
imperfections in the emission and coupling can be simply
modeled by a beam splitter with the transmissivity 

injected by a thermal state with mean photon number
Nd=ð1� 
Þ, where Nd is the mean number of thermal

photons with Bose-Einstein statistics pm ¼ Nm
d

ðNdþ1Þmþ1 . The

detector efficiency and the dark-count rate can be included
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into 
 and Nd. The Wigner function of the obtained
state exhibits negativity if Nd < 
� 1=2 that vanishes
for 
< 1=2. Consequently, for lower 
 one of the signifi-
cant features of the single-photon state that is the negativity
of its Wigner function cannot be observed. Nevertheless,
still one can test incompatibility of the state with the
decomposition (1) using the proposed criterion. In the
present case the probabilities of vacuum and single-photon

detections read p0 ¼ 1�
þNd

ð1þNdÞ2 and p1 ¼ 
þNdð1�
þNdÞ
ð1þNdÞ3 . The

result of our criterion after optimization of Pmax
a is visible

in Fig. 2. For states lying below the dash-dotted curve the
Wigner function is negative. The dark gray area stands for
the states with a positive Wigner function that are not a
mixture of Gaussian states. For comparison, the threshold
for the background noise degrading the states to mixtures
of coherent states is Nd < 
 and it is depicted by a dashed
curve in Fig. 2. The states above this curve can be prepared
as a mixture of coherent states. The light gray region is
unknown territory where it still could be possible to de-
velop a new stronger criterion. Figure 2 reveals a remark-
able possibility to distinguish a nontrivial quantum
nonlinearity in the emitter although the overall efficiency
of registration is a few orders of the magnitude smaller.
Like in the case of single-photon states the proposed
criterion can be targeted on superposition of coherent
states [9]. When prepared experimentally the states are
practically very close to squeezed Fock states and it is
just needed to first apply an optimal resqueezing operation
[10] on the Wigner function estimated from the homodyne
tomography and then to use the criterion.

In conclusion, we proposed a novel criterion detecting
quantum states with a positive Wigner function that cannot
be expressed as a convex mixture of Gaussian states. We
have analyzed prospective applications of this criterion for
two different sources of heralded single photons involving
photon subtraction [9] and photon counting on a two-mode

squeezed state [11]. For low squeezing, the criterion de-
tects the states incompatible with a mixture of Gaussian
states substantially better than the negativity of the Wigner
function (measured by a homodyne detector), tolerating a
less efficient and noisier heralding detector. It can point to
a promising direction in an experiment which can enable
the preparation of a single photon with a negative Wigner
function after overcoming technical limitations. The ques-
tion of further applications for these highly nonclassical
states with a positive Wigner function remains open.
Nevertheless, we have found that squeezing can be con-
centrated from such imperfect single photons. Similarly,
for the solid-state single-photon sources the criterion can
complement the test of an anticorrelation parameter utili-
zing the same experimental setup and proves a stronger
statement, that the produced states are even incompatible
with any state preparation based on a mixture of Gaussian
states. If this criterion detects the property for an emitter,
other techniques can be applied to further improve the
emitter’s performance. In order to achieve a strong cou-
pling regime, sophisticated metallic nanowires can later be
used to enhance photon harvesting into a well-localized
mode [12]. Once a large enough portion of the emitted
signal is captured, a negative Wigner function can be
observed proving the presence of a stronger nonclassical
property of the resource single-photon state in the gener-
ated state.
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