
H ¼ xpModel Revisited and the Riemann Zeros

Germán Sierra1 and Javier Rodrı́guez-Laguna2
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Berry and Keating conjectured that the classical Hamiltonian H ¼ xp is related to the Riemann zeros.

A regularization of this model yields semiclassical energies that behave, on average, as the nontrivial

zeros of the Riemann zeta function. However, the classical trajectories are not closed, rendering the model

incomplete. In this Letter, we show that the Hamiltonian H ¼ xðpþ ‘2p=pÞ contains closed periodic

orbits, and that its spectrum coincides with the average Riemann zeros. This result is generalized to

Dirichlet L functions using different self-adjoint extensions of H. We discuss the relation of our work to

Polya’s fake zeta function and suggest an experimental realization in terms of the Landau model.
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One of the most promising avenues to prove the
Riemann hypothesis (RH) is to find a self-adjoint operator
H whose spectrum contains the imaginary part of the
nontrivial Riemann zeros [1,2]. This idea was suggested
by Polya and Hilbert at the dawn of the twentieth century
and still, one hundred years later, it remains unproved, as
well as the RH itself (see [3] for a recent review on physical
approaches to the RH). There are significant hints of the
validity of the Polya-Hilbert conjecture. Two of them are
the Montgomery-Odlyzko law, which states that the local
statistics of the Riemann zeros is given by the Gaussian
unitary ensemble of random matrix theory, and the formal
similarities between counting formulas of zeros in number
theory and energy levels in quantum chaotic systems. In
this web of relationships, Michael Berry suggested the
existence of a classical Hamiltonian whose quantum ver-
sion would realize the Polya-Hilbert conjecture [4]. This
conjectured Hamiltonian must satisfy the following con-
ditions: (i) be chaotic, with isolated periodic orbits related
to the prime numbers, (ii) break time reversal symmetry, to
agree with the Gaussian unitary ensemble statistics, and
(iii) be quasi–one dimensional. These conditions were
derived from a formal analogy between the fluctuation
part of the Riemann-Mangoldt formula of the zeros of
the zeta function and the Gutzwiller formula for the fluc-
tuation term of the counting of energy levels in a chaotic
quantum system.

In 1999 Berry and Keating showed that the classical
Hamiltonian Hcl ¼ xp fulfills conditions (ii) and (iii) but
not condition (i) [5]. The failure of (i) is dramatic because
this Hamiltonian is integrable, and therefore not chao-
tic, and moreover the classical trajectories are not closed,
which leads naturally to a continuum spectrum. Indeed, the
Hamiltonian Hcl ¼ xp can be quantized in terms of

the self-adjoint operator Ĥ ¼ ðxp̂þ p̂xÞ=2, with p̂ ¼
�i@d=dx, and its spectrum is given by the real line [6,7].
In order to obtain a discrete spectrum, out of the xpmodel,
Berry and Keating imposed the conditions jxj � ‘x and

jpj � ‘p, where the minimal length ‘x and minimal mo-

mentum ‘p span the Planck area ‘x‘p ¼ 2�@ in phase

space. Subject to these conditions, a particle with energy
E> 0 describes a truncated hyperbola in phase space,

xðtÞ ¼ ‘xe
t; pðtÞ ¼ E

‘x
e�t; 0 � t � TE ¼ log

E

h
:

(1)

The area bounded by this trajectory, and the x ¼ ‘x
and p ¼ ‘p axes, measured in Planck units, give the semi-

classical number of states

NðEÞ ¼ E

2�@

�
log

E

2�@
� 1

�
þ 7

8
þ . . . ; (2)

where the constant 7=8 comes from aMaslov phase. Rather
remarkably, this formula coincides with the asymptotic
behavior of the average term in the Riemann-Mangoldt
formula [1], where E=@ is interpreted as the height of a
nontrivial zero. Incidentally, Connes also studied the xp
Hamiltonian imposing the constraints jxj � �, jpj � �,
where � is a cutoff [8]. In the limit � ! 1, one obtains
semiclassically a continuum spectrum, where the smooth
Riemann zeros appear as missing spectral lines. However,
a more appropriate interpretation of Connes’s result is that
Riemann’s formula gives a finite size correction to the
energy levels. Connes’s regularization was later derived
from the Landau model of a particle moving in two dimen-
sions (2D) under the action of external magnetic and
electric fields [9].
A fundamental problem of the Berry-Keating model is

that the classical trajectories are not closed. The particle
starts at the phase space point (‘x, E=‘x), and stops at the
point (E=‘p, ‘p) in a time TE [see Eq. (1)]. The xp

Hamiltonian breaks time reversal, so the particle cannot
return to its initial position along the time reversed path.
Berry and Keating suggested different ways to close the
trajectories, such as the identification of x and �x, and p
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and �p, or the use of symmetries, but no definite conclu-
sion was reached, and consequently, the connection of (2)
with the Riemann formula could not be put on more solid
grounds.

The aim of this Letter is to show that the closure problem
can be solved by a modification of the xp model that
preserves several of its features, but makes it into a con-
sistent quantum model. First of all, we shall constrain the
motion of the particle to the half line ‘x � x � 1while the
momentum is allowed to take any real value (see [10] for a
quantum mechanical model with a Morse potential defined
on the half line whose spectrum is similar to that of the
regular Riemann zeros). The classical Hamiltonian is
defined as

Hcl ¼ x

�
pþ ‘2p

p

�
; x � ‘x; p 2 R; (3)

where ‘p is a coupling constant with dimensions of mo-

mentum. If jpj � ‘p, the extra term added to the xp

Hamiltonian is negligible, but it becomes dominant if
jpj � ‘p, forbidding the particle to escape to infinity,

since that would cost an infinite energy. This result is
made clear by the solution of the Hamilton equations

_x ¼ x

�
1� ‘2p

p2

�
; _p ¼ �

�
pþ ‘2p

p

�
; (4)

given by

xðtÞ ¼ ‘x
jp0j e

2t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2

0 þ ‘2pÞe�2t � ‘2p

q
;

pðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2

0 þ ‘2pÞe�2t � ‘2p

q
:

(5)

A complete cycle of a classical trajectory can be described
as follows (see Fig. 1). The particle starts at the point
A ¼ ð‘x; p0Þ (with jp0j � ‘p). Then, x increases and p

decreases monotonically reaching the turning point
B ¼ ðxmðEÞ; ‘pÞ, where xmðEÞ ¼ E=2‘p is the maximal

elongation. After that, the particle moves backwards to
the point C ¼ ð‘x; ‘2p=p0Þ, which is attained in a time

TE ¼ cosh�1 E

2h
! log

E

h
ðE � hÞ; (6)

where h � ‘x‘p should not still be identified with Planck’s

constant 2�@. At the point C, the particle bounces off,
meaning that its momentum ‘2p=p0 becomes p0, and the

cycle repeats itself, with TE being the period. The latter
process preserves the total energy, and it is analogous to the
change in the momentum, p ! �p, of a particle hitting a
wall. The classical energies are bounded from below by the
condition jEj � Ecl

0 ¼ 2h. The minimum energy corre-

sponds to the static solutions x ¼ ‘x and p ¼ �‘p.

An extra condition on the Riemann dynamics is the
existence of complex periodic orbits (instantons) with
periods Tinst;m ¼ �im (with m an integer) [5]. The orbits

(1) of the xp model are periodic in imaginary time, but
with a wrong period 2�i. After a complex time �t ¼ i�,
the position and momenta change sign, which led Berry
and Keating to suggest the aforementioned identification
between x and �x, and p and �p, which in any case does
not close the orbits. This problem does not arise for the
Hamiltonian (3), which contains complex periodic orbits
with a period �i, as can be seen from Eq. (5).
The semiclassical number of states is given by the phase

space area swept by the particle measured in units of 2�@,
and it is given by

NðEÞ ¼ E

2�@

�
cosh�1 E

2h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2h=EÞ2

q �

’ E

2�@

�
log

E

h
� 1

�
þOðE�1Þ; E

2h
� 1: (7)

This formula agrees with Eq. (2) if h ¼ 2�@, up to the
constant term, which does not arise in (7). Let
us now proceed to the quantization of the classi-
cal Hamiltonian (3). We choose the normal ordering
prescription,

Ĥ ¼ x1=2
�
p̂þ ‘2p

p̂

�
x1=2; (8)

where 1=p̂ is the 1D Green function satisfying p̂p̂�1 ¼
p̂�1p̂ ¼ 1, and whose matrix elements are�

x

��������
1

p̂

��������y
�
¼ � i

@
�ðy� xÞ (9)

with �ðxÞ the Heaviside step function. Ĥ acts on a wave
function c as

Ĥc ðxÞ ¼ �ix1=2
�
@
d

dx
fx1=2c ðxÞg

þ ‘2p
Z 1

‘x

dy

@
�ðy� xÞy1=2c ðyÞ

�
: (10)

This operator is Hermitian, i.e., hc 1jĤc 2i ¼ hĤc 1jc 2i,
if both wave functions satisfy the nonlocal boundary
condition

@ ‘1=2x ei#c ð‘xÞ þ ‘p
Z 1

‘x

dxx1=2c ðxÞ ¼ 0; (11)

where # 2 ½0; 2�Þ. To derive (11), we have assumed that

c ðxÞ decays asymptotically faster that x�1=2. Using

Eq. (10), the Schrödinger equation Ĥc E ¼ Ec E becomes
an integro-differential equation which can be converted

FIG. 1 (color online). Classical trajectories given in Eqs. (5)
(continuous line) and (1) (dashed line).
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into a second order differential equation and a boundary
condition. The solution of both equations yields a unique
square integrable eigenfunction given by

c EðxÞ ¼ xðiEÞ=2@K1=2�ðiEÞ=2@
�
‘px

@

�
; (12)

where K�ðxÞ is the modified K-Bessel function (the nor-
malization factor is not included). The asymptotic behavior
of (12) is given by

c EðxÞ �
	
x�1=2þðiEÞ=@ x � xmðEÞ
x�1=2þðiEÞ=2@e�‘px=@ x � xmðEÞ;

(13)

where xmðEÞ is the maximal length of the classical trajec-
tory. If x � xm the wave function c EðxÞ behaves, up to

oscillations, as the eigenfunction x�1=2þðiEÞ=@ of the quan-
tum Hamiltonian x1=2p̂x1=2. However, c EðxÞ drops expo-
nentially in the classical forbidden region (see Fig. 2). The

Hermiticity of Ĥ requires the eigenfunctions (12) to satisfy
the boundary condition (11), which in turn provides the
equation for the eigenenergies, En,

�ĤðEÞ � e�ið#=2ÞK1=2þðiEÞ=ð2@Þ
�
h

@

�

þ eið#=2ÞK1=2þðiEÞ=ð2@Þ
�
h

@

�
¼ 0: (14)

All the solutions of this equation will be real, if the

Hamiltonian Ĥ is not only Hermitian but also self-adjoint.
To verify this property we use the von Neumann theorem:

Ĥ is a self-adjoint operator if the deficiency indices nþ and
n� coincide [11,12]. These indices are the number of

linearly independent solutions of the equations Ĥyc ¼
�ic . Then if n ¼ nþ ¼ n�, the operator Ĥ admits infi-
nitely many self-adjoint extensions parametrized by matri-
ces of the unitary group UðnÞ. In our case we find that
nþ ¼ n� ¼ 1; therefore, the self-adjoint extensions
correspond to a phase that can be identified with the factor
ei# appearing in Eqs. (11) and (14). This ends the proof of
the reality of all the eigenenergies En.

If # ¼ 0, all the eigenenergies are nonvanishing and
form time conjugate pairs fEn;�Eng with their associ-
ated eigenfunctions being related by the time reversal
transformation c�En

ðxÞ ¼ c 	
En
ðxÞ. If # ¼ �, there is a

unique state of zero energy E0 ¼ 0, and eigenfunction

c E0
ðxÞ / x�1=2e�lpx=@, while the nonzero energy states

again form time conjugate pairs. The ground state energies
�E0 depend strongly on # and can be lower or higher than
the classical value Ecl

0 .

To fix the value of #, corresponding to the average of
positive Riemann zeros, we use the asymptotic behavior of
Eq. (14),

�ĤðEÞ ’
�
4�@

h

�
1=2

e�ð�EÞ=ð4@Þ cos
�
E

2@
log

E

he
� #

2

�
; (15)

which vanishes at

E

2�@
log

E

he
� #

2�
¼ nþ 1

2
; n 2 Z: (16)

If h ¼ 2�@ and # ¼ 5�=4, one recovers the semiclassical
estimates for NðEÞ given in Eqs. (2) and (7). A better
estimate of the average of positive Riemann zeros is ob-
tained ifNðEÞ is a half integer [4,13], which corresponds to
# ¼ �=4 (see Fig. 3 ). To fit the negative Riemann zeros
one has to choose # ¼ ��=4. A simultaneous fit of both
positive and negative average Riemann zeros requires a
modification of the Hamiltonian (3), which will be pre-
sented elsewhere.
A confirmation of these results comes from a compari-

son with Polya’s work on the Riemann� function [14] (see
also [1,2]),

�ðtÞ ¼ 1
2sðs� 1Þ��s=2�ðs=2Þ�ðsÞ; s ¼ 1

2 þ it; (17)

which is an entire and even function in t, whose zeros
coincides with the nontrivial zeros of �ð12 þ itÞ. Polya made

a Fourier expansion of (17) and truncated it, obtaining

�	ðtÞ ¼ 4�2½K9=4þðitÞ=2ð2�Þ þ K9=4þðitÞ=2ð2�Þ
; (18)

which is called Polya’s fake zeta function, since it shares
several properties with �ðtÞ. First of all, the zeros of�	ðtÞ
and �ðtÞ agree on average, as can be seen using the
asymptotic expansion [2]:

�	ðtÞ��1=42�5=4t7=4e�ð�tÞ=4 cos
�
t

2
log

t

2�e
þ7�

8

�
: (19)

This expression vanishes when the argument of the cosine
is nþ 1

2 , which confirms the aforementioned rule for the

average location of the positive Riemann zeros, and in turn

FIG. 2 (color online). Absolute value wave functions c EðxÞ,
given in Eq. (12) (continuous line), and x�1=2þðiEÞ=@ (dashed
line).

5 10 15 20 25 30
E

1000 1001 1002 1003 1004 1005
E

FIG. 3 (color online). From bottom to top: plot of � logj�ðEÞj
(Riemann zeros), average Riemann zeros, � logj�ĤðEÞj [eige-
nenergies of Ĥ for h ¼ 2�@, # ¼ �=4], and � logj�	ðEÞj
(Polya zeros). The cusp represents the zeros of the corresponding
equations.
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the choice # ¼ �=4. A more remarkable fact is that all the
zeros of �	ðtÞ are real, as was proved by Polya using a
general theorem on entire functions [14]. This theorem can
also be applied to prove the reality of all the zeros of
�ĤðEÞ, a result that we obtained using the self-adjointness
of the operator Ĥ.

The RH is a particular case of the generalized Riemann
hypothesis, which asserts that all the nontrivial zeros of the
Dirichlet Lð�; sÞ functions, associated to the Dirichlet
character �, lie on the critical line Res ¼ 1

2 . These func-

tions are defined by a series and the associated Euler
product (Res > 1)

Lðs; �Þ ¼ X1
n¼1

�ðnÞ
ns

¼ Y
p:prime

1

1� �ðpÞp�s ; (20)

and their analytic extension to the complex plane. �ðnÞ
are multiplicative arithmetic functions, i.e., �ðnmÞ ¼
�ðnÞ�ðmÞ, �ðnþ qmÞ ¼ �ðnÞ, �ð1Þ ¼ 1, where q is the
modulus of �. L functions associated to primitive chara-
cters satisfy the functional relation [15],

�ðs; �Þ ¼
�
�

q

��ðsþa�Þ=2
�

�
sþ a�

2

�
Lðs; �Þ ¼ ���ð1� s; ��Þ;

(21)

where a� is the parity and �� is the sign of a Gaussian sum,

a� ¼ 1� �ð�1Þ
2

; �� ¼ ��

ia�q1=2
;

�� ¼ Xq
n¼1

�ðnÞeð2�inÞ=q:
(22)

A L function is even (odd) if a� ¼ 0ð1Þ. The Riemann zeta

function corresponds to the trivial character �ðnÞ ¼ 1,8n,
with a� ¼ 0, �� ¼ 1. Equation (21) yields the average

location of the zeros of Lð�; sÞ,
t

2�
log

qt

2�e
� 1

8
þ a� þ �� � 1

4
¼ nþ 1

2
; (23)

which leads us to the following identification of parameters

in the Ĥ model [see Eq. (16)],

E

@
¼ t; h¼2�@

q
; #¼�

4
ð3�2a��2��Þ: (24)

The Riemann zeta function corresponds to the case q ¼ 1,
for which h ¼ 2�@, # ¼ �=4. The correspondence (24)
implies that the constant h is quantized as a function of the
modulus of the L functions, attaining the classical limit,
h ! 0, when q ! 1.

A physical realization of the Hamiltonian (3) is sug-
gested by the work of Ref. [9], which showed that
Hcl ¼ xp emerges as the effective Hamiltonian of an elec-
tron moving in the x-y plane, subject to the action of a
uniform magnetic field B, perpendicular to the plane, and
an electrostatic potential Vðx; yÞ ¼ V0xy. If V ¼ 0, the
electron occupies the lowest Landau level which is com-
pletely degenerate. This degeneracy is broken by the

potential Vðx; yÞ, which in perturbation theory becomes
the 1D Hamiltonian Heff ¼ !0xp, where !0 ¼ V0‘

2=@

(‘ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c=eB

p
is the magnetic length). The latter

Hamiltonian is obtained replacing y ! ‘2p=@ in Vðx; yÞ.
Consider now that the particle moves in the half-plane
x � ‘ and that the electrostatic potential is

Vðx; yÞ ¼ V0x

�
yþ ð2�‘=qÞ2

y

�
: (25)

Then, the effective Hamiltonian, in the lowest Landau
level, in units of !0, becomes (3), with the identifications
‘x ¼ ‘, ‘p ¼ 2�@=q‘, and h ¼ 2�@=q. We expect the

parameter # to arise from an electric field applied at the
boundary x ¼ ‘ of the system.
In summary, we propose a modification of the Berry-

Keating xp Hamiltonian that contains classical periodic
orbits, and whose quantization agrees with the average
Riemann zeros. Our results make contact with Polya’s
fake zeta function and we generalize them to Dirichlet L
functions. Further investigation is required to incorporate
the fluctuations of the Riemann zeros, providing a realiza-
tion of the Polya and Hilbert conjecture.
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