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Fermi-edge absorption theory predicting the spectrum Að!Þ / !�2�0=�þ�2
0
=�2

relies on the assumption

that scattering phase �0 is frequency independent. The dependence of �0 on ! becomes crucial near the

resonant condition, where the phase changes abruptly by �. In this limit, because of the finite time spent

by electron on a resonant level, the scattering is dynamic. We incorporate the finite time delay into the

theory, solve the Dyson equation with a modified kernel, and find that, near the resonance, Að!Þ behaves
as !�3=4j ln!j. Scattering off the core hole becomes resonant in 1D and 2D in the presence of an empty

subband above the Fermi level; then a deep hole splits off a level from the bottom of this subband. Fermi-

edge absorption in the regime when resonant level transforms into a Kondo peak is discussed.
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Introduction.—Along with the Kondo effect, the Fermi-
edge absorption from the localized level into a continuum
is a fundamental many-body effect in the Fermi systems
[1]. Its many-body character manifests itself via two
mechanisms: scattering of the excited electron from the
hole left behind and adjustment of the Fermi sea to the
abrupt switch-on of the hole potential. Correspondingly,
near the threshold, the spectrum, Að!Þ ¼ Ið!ÞPð!Þ, is a
product [2] of two functions

Ið!Þ ¼
�
D

!

�
2�0=�

; Pð!Þ ¼
�
D

!

���2
0
=�2

; (1)

where D is the bandwidth and �0 is the phase shift for s
scattering. Phase �0 is related to the hole potential strength
V as tan�0 ¼ ��0V, where �0 is the density of states. The
function Ið!Þ is the single-electron-line contribution,
which describes the first mechanism, while Pð!Þ accounts
for the shakeup effects.

The essence of the anomalous behavior of Ið!Þ can be
illustrated using Fig. 1(a). In the first order in scattering by
the core-hole potential, the electron is first promoted by a
photon from the initial state (i) to the state (�), and then
scattered into the final state (f) by the core-hole potential.
Sensitivity to the Fermi edge is due to the fact that the
virtual state � can lie only above the Fermi level. Indeed, in
a process when � is below the Fermi level, the optical
transition i ! � takes place after the scattering � ! f.
This scattering happens from the occupied core level i
and is thus suppressed [3]. Summation over empty virtual
states leads to the anomalous contribution / V lnð!=DÞ to
Ið!Þ. Equation (1) emerges upon collecting contributions,
/ Vnlnnð!=DÞ, in all orders, n.

Derivation of Eq. (1) by Nozieres and De Dominicis
(ND) in Ref. [2] strongly relies on the assumption that �0

is frequency independent. This assumption implies that the
scattering is instantaneous. Below we focus on low-
dimensional systems (2D and 1D) and identify a situation
when the above assumption is violated. This situation

realizes when the Fermi level is close to an empty upper
subband, as shown in Fig. 1. In such an arrangement it is
important that in 2D and 1D even a deep core hole creates a
localized level a distance Eex below the bottom of the
upper subband, see Fig. 1. Studies of many-body effects
in the arrangement when Fermi level is near the bottom of
empty subband have been reported in Refs. [4–10].
Because of hybridization with continuum of lower

band, the level Eex acquires a finite width �. Then the
process underlying the Fermi-edge singularity is not scat-
tering from bare core-hole potential but rather resonant
scattering on the quasilocal level. Correspondingly, the
scattering phase is given by

�ð!Þ ¼ arctan
�

!� �
; (2)

where � is the energy distance from localized level to the
Fermi level EF. In the limit � ! 0, ! dependence of
� is strong. Indication that in this limit the ND theory is
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FIG. 1 (color online). (a) In the presence of upper subband, the
core-hole potential creates bound state (resonant level) with
energy Eex measured from the bottom; its lifetime � is due to
a coupling to the lower subband. For a photoelectron with
energy, ! � � above the Fermi level, the dynamical character
of scattering from resonant level is crucial. (b) In the presence of
resonant level, the amplitude of virtual process 2 then 3 is
attractive, while the amplitude of virtual process 4 then 5 is
repulsive.
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inapplicable follows from the fact that at! ¼ �, the phase
jumps by �. Naive assumption that Ið!Þ is ‘‘local’’ in
frequency leads to a paradoxical conclusion that, as EF is
swept through the bound state, Ið!Þ changes abruptly from
Ið!Þ / 1=! to Ið!Þ / !. By contrast, the shakeup term

Pð!Þ / !1=4 does not experience a jump.
As a resolution of this paradox, in this Letter we show

that abrupt change of Ið!Þ does take place in the frequency
interval, !� j�j, which gets progressively narrow as �
goes to 0. We also show that outside this interval, where the
ND theory does not apply, a new, dynamical resonant-
scattering regime governs the absorption [11]. In this re-
gime, instead of Eq. (1), Ið!Þ is given by

Ið!Þjj�j<!<� ¼ �0

2�

�

!
ln

�
Eex

!

�
; (3)

independently of the sign of �. Our findings are illustrated
in Fig. 2.

Dynamic-scattering regime.—Within the ND theory, the
transient Green function ’ð�; �0jt; t0Þ satisfies the Dyson
equation

’ð�;�0jt; t0Þ ¼Gð���0Þþ
Z t0

t
d~�Kð�; ~�Þ’ð~�;�0jt; t0Þ; (4)

where GðtÞ ¼ ��0=t is the bare electron Green function,
and the kernel is defined as Kð�; ~�Þ ¼ VGð�� ~�Þ. The
single-electron-line contribution to Að!Þ is expressed in
terms of the transient Green function as

Ið!Þ ¼ � 1

�
Im

Z 0

�1
dte�i!t’ð0�; tþjt; 0Þ: (5)

The delicate character of Fermi-edge absorption can be
inferred from the structure of nth term,

Vn
Z 0

t
dt1 � � �

Z 0

t
dtnGð�t1ÞGðt1 � t2Þ � � �Gðtn � tÞ; (6)

of perturbative expansion of ’ð0�; tþjt; 0Þ in powers of V,
which follows from Eq. (4). It appears that contributions of
different orderings of times ti, Fig. 3(a), at which electron
is scattered, cancel each other up to 1=n!.
Frequency dependence of �, Eq. (2), translates into a

time delay � in the scattering processes, as illustrated in
Fig. 3(b). Each delay ranges from E�1

ex to j�j�1. Then, in
the limit � ! 0, the above cancellation is completely
destroyed. On the quantitative level, the dynamical char-
acter of the resonant scattering alters the kernel of Eq. (4).
Resonant-scattering kernel.—In the presence of the

empty upper subband, the constant interaction V for elec-
trons of the Fermi sea acquires a frequency dependence,

~Vð!Þ ¼ V12

G2ð!Þ
1� V22G2ð!ÞV21: (7)

Here V12 and V22 are inter- and intrasubband matrix ele-
ments of the hole potential, respectively; G2 is the Green
function of the upper subband,

G2ð!Þ ¼ X
q

1

!� �2q þ i�
; (8)

and �2q ¼ @
2q2=2m is the spectrum near the bottom. The

form Eq. (7) is a result of summation of ladder-type dia-
grams, see a blowup in Fig. 3. Since V22 < 0 describes
attraction, bound state emerges as a pole in Eq. (7),

Eex¼2�2m

@
2

jV22j2ð1DÞ; Eex¼De�ð2�@2=mjV22jÞð2DÞ: (9)

Expanding near the pole, we simplify ~V to the form

~Vð!Þ ¼
�

�

��0

�
1

!� �þ i�
; (10)

where the width � is given by
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FIG. 2 (color online). Absorption spectrum Að!Þ in the situ-
ation when the Fermi level is close to resonant level (j�j � �) is
shown schematically. For !< j�j the ! dependence, Eq. (25),
is governed by ND theory. In the ‘‘dynamic-scattering’’ domain
j�j<!< � the spectrum is Að!Þ ¼ ð�=!Þ3=4 lnðEex=!Þ for
any sign of �. In the domain ! � �, Að!Þ exhibits a jump at
! ¼ Eex, when absorption into the second subband sets in.
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FIG. 3 (color online). (a) Typical contribution, Eq. (6), to the
transient Green function in ND theory. Instantaneous scatterings
take place at time moments, t1; t2; . . . ; tn. (b) In the presence of a
resonant level, each scattering act involves a ‘‘visit’’ to the
resonant level, and takes a finite time �. The blowup illustrates
a ladder of scatterings off the core hole in the upper subband, 2,
which leads to resonant scattering in the lower subband, 1.
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� ¼ 2��0Eex

jV22j jV12j2ð1DÞ;

� ¼ 2�2
@
2�0Eex

mjV22j2
jV12j2ð2DÞ:

(11)

Effective interaction Eq. (10) corresponds to repulsion for
!>� and to attraction for !< �. In the resonant-
scattering regime, the kernel in Eq. (4) instead of the
simple product VGð�� ~�Þ becomes a convolution

Kresð�; �0Þ ¼
Z 0

t
d��Gð�� ��Þ

Z 1

�1
d!

2�
e�i!ð����0Þ ~Vð!Þ:

(12)

Integration over ! can be carried out explicitly, yielding

Kresð�; �0Þ ¼ i
�

�

Z 0

t
d��

�ð�� � �0Þ
�� ��

e�i�ð����0Þ: (13)

For the most interesting case � ¼ 0, the expression for the
kernel assumes the form

Kresð�; �0Þ ¼ �i
�

�
ln

��������
�

�� �0

��������: (14)

We see that lnj�� �0j in Kres emerges in the place of
1=ð�� �0Þ in the ND kernel. This is a consequence of
opposite signs of interaction with resonant level for elec-
trons and for holes.

Derivation of Eq. (3).—Substituting Eq. (14) into Eq. (4)
and performing the rescaling

’ð�; �0jt; 0Þ ¼ �0

t
�

�
�

t
;
�0

t

�
; (15)

we arrive to the following dimensionless equation:

�ðx; yÞ ¼ � 1

x� y
þ i	

Z 1

0
dz ln

�
x

jx� zj
�
�ðz; yÞ; (16)

where 	 ¼ �
� t. Note that the kernel Eq. (16) is much less

singular than the ND kernel. As a result, the solution does

not contain a ND transient factor, ½ð1� xÞy=ð1� yÞx��=�,
which is singular for x ! 0, y ! 1. This allows us to
search for the solution of Eq. (16) as a linear combination
�ðx; yÞ ¼ P

mcmðy; 	ÞumðxÞ of the eigenfunctions unðxÞ of
the Hermitian integral operator

R̂funðxÞg ¼
Z 1

0
dz lnjx� zjunðzÞ ¼ 
nunðxÞ; (17)

where 
n are the eigenvalues. The kernel in Eq. (17) is
symmetric with respect to x ¼ 1=2. Correspondingly,
unðxÞ, n ¼ 0; 1; 2; . . . are even (for n even) and odd (for n
odd) functions of (x� 1

2 ). For coefficients cmðy; 	Þ of the
linear expansion Eq. (16) yields cmðy; 	Þ ¼ ½amðyÞ þ
bmdðy; 	Þ�=ð1þ i	
mÞ, where

amðyÞ ¼
Z 1

0
dz

umðzÞ
y� z

¼ 
mu
0
mðyÞ; (18)

bm ¼
Z 1

0
dzumðzÞ lnz ¼ 
mumð0Þ: (19)

In the second identities of (18) and (19) we used Eq. (17).
The kernel, lnx� lnjx� yj, of Eq. (16), in addition to

the difference term, contains a y-independent term. As a
result, the coefficient dðy; 	Þ ¼ i	

R
1
0 dz�ðz; yÞ is the same

for all m. Our key observation is that the relevant values of
m are � 1. For such m, it can be shown that eigenvalues
behave as 
m � �1=m. Concerning the eigenfunctions
umðxÞ, near the boundaries x ¼ 0, 1 they are constants,
umð0Þ ¼ 	umð1Þ, while their derivatives diverge loga-
rithmically. Outside of small (� 1=m) intervals from
the boundaries, umðxÞ behave as sinð2�x=
mÞ and
cosð2�x=
mÞ. All these large-m properties can be estab-
lished upon integrating by parts in Eq. (17). Then the result
is determined by a narrow domain jx� zj � 1=m. The
same simplification leads to a concise expression for
dðy; 	Þ, namely, dðy; 	Þ ’ �i	 lnð1� yÞ, and subse-
quently to the solution for �ðx; yÞ

�ðx; yÞ ’ � lnð1� yÞX
n

½unð1Þ þ i	
nunð0Þ�unðxÞ
1þ i	
n

:

(20)

In calculating Ið!Þ from Eq. (20) the combinationP
nunð1ÞunðxÞ appears. This combination is equal to

�ð1� xÞ and does not contribute to the absorption. In the
ND problem, divergences in the time domain are cut off by
iD�1. In our case, the logarithmic divergence in Eq. (20) is
terminated at ð1� yÞ ¼ iðEextÞ�1. Correspondingly, the
minimal x in Eq. (20) is, in fact, xmin ¼ iðEextÞ�1. Taking
this into account and using Eqs. (5) and (15), we express
Ið!Þ in the integral form

Ið!Þ ’ 2�0�

�
Im

Z 1

0
dtei!tSðtÞ lnðiEextÞ; (21)

where the sum

SðtÞ ¼ X
odd m


mumð0ÞumðxminÞ

m�tþ i�

(22)

is performed over only oddm, for which umð1Þ ¼ �umð0Þ.
Summation over m requires large-m values of umð0Þ. In
fact, these values saturate with increasing m. The latter
follows from the identity

X
odd m


mumð0ÞumðxÞ ¼ 1

2
ln

�
x

1� x

�
; (23)

which is a direct consequence of the identity, lnx ¼P
m
mumð0ÞumðxÞ. The left-hand side behaves as lnx at

x ! 0. With 
m � �1=m, this suggests that umðxÞ �
umð0Þ � 1 for m< x�1. Comparing Eqs. (22) and (23)
we conclude that

SðtÞ � 1

4
þ 1

2�i
lnði�txminÞ ¼ 1

4
þ 1

2�i
ln

�
Eex

�

�
: (24)
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The imaginary part of SðtÞ is determined by the upper
cutoff, while ReSðtÞ comes from m� �t; relevant values
of m are large, as we assumed above. Factor �t in the
argument of the logarithm comes from the terms in sum
equation (22) with m & �t.

With SðtÞ being time independent for t � ��1, integra-
tion in Eq. (21) recovers our result Eq. (3). Physical
meaning of the enhancement factor �=! in Eq. (3) is the
number of virtual visits of the resonant level and returns to
the lower subband by electron during the time 1=!.
Away from the resonance, V12 can be taken into acco-
unt on a perturbative level, leading to a factor ½1þ
�=! lnðD=!Þ�, in Ið!Þ. Nontriviality of Eq. (3) is that
this factor is essentially unchanged near the resonance,
when the number of visits to resonant level is large,
�=! � 1.

Concluding remarks.—(i) Our main result, Eq. (3), was
obtained by setting � ¼ 0 in the kernel equation (13).
Finite-� correction to Að!Þ is small as ð�=!Þ2. Let us
briefly discuss the opposite limit, ! � j�j � �. In this
limit, the characteristic time t in Fig. 3 is � j�j�1. Then,
our above consideration for � ¼ 0 applies only in the time
domain (� j�j�1, 0). In the remaining domain (t,�j�j�1)
time intervals ti � tiþ1 in Fig. 3 are much bigger than
j�j�1. This makes scattering ‘‘instantaneous,’’ and ND
theory applicable in the domain (t, �j�j�1); correspond-
ing time-independent scattering amplitude and effective
bandwidth are �=ð��0�Þ and �, respectively. Separation
of time scales leads to the absorption coefficient in

the form of a product of ð!=j�jÞ�2 arctanð�=�Þ=� �
ð!=j�jÞ�sgn� (from long times), and �=j�j (from short
times, jtij< j�j�1). With shakeup included, the overall
result for absorption coefficient,

Að!Þj�>0 / �

!

�
!

�

�
1=4

; Að!Þj�<0 /!�

�2

�
!

�

�
1=4

; (25)

is illustrated in Fig. 2. At !��, Eq. (25) matches Eq. (3)
with logarithmic accuracy.

(ii) Ovals in Fig. 3 can overlap; this corresponds to
double occupancy of the resonant level, which our theory
does not prohibit. This implies that the Hubbard repulsion
U is smaller than �. SinceU is inversely proportional to the
radius of the level wave function, this condition can be met
for a shallow level.

Even more interesting is the situation when resonant
level, which is split off the upper band by the core hole,
is well below the Fermi level (j�j � �), and U is not
small. Then the level gets occupied, and after time
�T�1

K � exp½��=2�� a Kondo peak of width �TK is
formed at the Fermi level [13]. The photoexcited electron
will experience dynamical resonant scattering from this
peak. One can argue that our result for dynamical
resonant-scattering regime will apply in this situation,
with replacement ð�=!Þ ! ðTK=!Þ. However, we cannot

make this analogy rigorous because the Kondo scattering
of the state ! leads to finite lifetime �TK=!

2.
Another interesting possibility is when the core hole

possesses spin [14]. Then a Kondo peak at the Fermi level
will form even without the upper subband, so that the
scattering off the core hole will become a Kondo scattering
with !-dependent scattering phase.
(iii) Fermi-edge physics manifests itself also in

resonant-tunneling via an impurity [3,15]. However, the
regime � � �, considered here, cannot be realized in this
setting since at long times impurity gets reoccupied.
We are grateful to T. V. Shahbazyan for very helpful

discussions.
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