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Motivated by the recent discovery of broken fourfold symmetry in the hidden order phase of URu2Si2
[R. Okazaki et al., Science 331, 439 (2011)], we examine a scenario of a spin nematic state as a possible

candidate of the hidden order phase. We demonstrate that the scenario naturally explains most of

experimental observations, and furthermore, reproduces successfully the temperature dependence of

the spin anisotropy detected by the above-mentioned experiment in a semiquantitative way. This result

provides strong evidence for the realization of the spin nematic order.

DOI: 10.1103/PhysRevLett.106.196407 PACS numbers: 71.27.+a, 75.30.Mb

The heavy fermion compound URu2Si2 exhibits a sec-
ond order phase transition at THO � 17:5 K. In spite of
long-standing enormous efforts in experimental and theo-
retical studies [1–14], the order parameter of this phase
transition has not yet been identified. The enigmatic fea-
tures of this so-called ‘‘hidden order (HO)’’ phase are
described as follows: (i) Despite the large anomaly in
thermodynamic quantities and drastic reconstruction of
the Fermi surfaces at T ¼ THO, there is neither conven-
tional magnetic order nor a change in the crystal structure
[1–3,15–19]; (ii) however, under applied pressure, an anti-
ferromagnetic (AF) state with a large moment appears, and
more surprisingly, the Fermi surfaces in the AF ordered
state are almost the same as those found in the HO phase
[20–24].

Recently, an experimental breakthrough for this issue
was achieved by Okazaki et al. [25], who found sponta-
neous symmetry breaking in the spin space at T < THO.
They reported that the anisotropy of the spin susceptibility
in the xy plane, which is measured by the quantity �xy ¼
hSxSyi, becomes nonzero below THO. Since URu2Si2 is

tetragonal with fourfold symmetry at T > THO, and the
phase transition at T ¼ THO does not accompany any
lattice distortion, it is reasonable to expect that this sym-
metry breaking is an essential feature of the HO phase,
which imposes a crucial constraint on possible candidates
of the HO parameter. Motivated by this experimental ob-
servation, in this Letter, we discuss a possibility that a spin
nematic (SN) state is realized as the hidden order in
URu2Si2. The SN phase is a state with circulating spin
currents, but with no magnetic moment [26–28]. The cir-
culating spin currents break spin rotational symmetry,
leading to spin anisotropy, without breaking time-reversal
symmetry. We demonstrate that the above-mentioned fea-
tures of the HO phase are naturally understood within the
scenario of the SN order, and furthermore, that the tem-
perature dependence of the spin anisotropy spontaneously
generated in the SN state successfully explains the above
experimental observation in a semiquantitative way,

providing strong evidence for the realization of the SN
state as the HO phase of URu2Si2.
We, first, present a mean field analysis for basic proper-

ties of the SN state applied to the case of URu2Si2. The SN
state is induced by nesting of the Fermi surface as dis-
cussed in Refs. [26,27]. In fact, the recent band calcula-
tions for URu2Si2 based on an itinerant f-electron picture
revealed that there is one electron band denoted as "k1 and

one hole band denoted as "k2 [22,29], which are nested to

each other via the nesting vector Q0 ¼ ð0; 0; �Þ: i.e.,
"kþQ01 ¼ �"k2 [30,31]. It is noted that Q0 is equivalent

to the ordering vector of the large-moment AF state which
is observed under applied pressure [20]. Moreover, it was
pointed out that several experimental results suggest that
the energy gap opens on the Fermi surface below THO

[18,32–35], which is consistent with the gap generation
due to the nesting of the Fermi surface. Because of these
reasons, we employ the scenario that itinerant f electrons
undergo the transition to the SN state triggered by the
Fermi surface nesting. We will discuss the microscopic
origin of this instability later. Since the ordering vectors
for the large-moment AF phase and the SN phase are the
same, the feature (ii) mentioned above is naturally under-
stood within our scenario. The SN phase is a spin-triplet
electron-hole pairing state [26,27], and hence the order
parameter of the SN state for the effective two-band
model is

O SN
��0 ðkÞ ¼ hcyk1�ckþQ02�

0 i ¼ d12ðkÞ � ���0 ; (1)

where cyka� (cka� ) is a creation (an annihilation) operator

for an electron in the band a ¼ 1, 2 with momentum k,
spin �. d12ðkÞ is a vector, the direction of which is parallel
to the spin quantization axis of the SN order. Because of
time-reversal invariance in the SN state, we have the
condition d�12ð�kÞ ¼ �d12ðkÞ. Furthermore, we impose
inversion symmetry, since there is no indication of broken
inversion symmetry inURu2Si2 from experiments. Then, it
follows that d�12ðkÞ ¼ �d12ðkÞ. Also, we assume that
dabðkÞ is symmetric with respect to the exchange of the

PRL 106, 196407 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
13 MAY 2011

0031-9007=11=106(19)=196407(4) 196407-1 � 2011 American Physical Society

http://dx.doi.org/10.1126/science.1197358
http://dx.doi.org/10.1103/PhysRevLett.106.196407


band indices a and b. This assumption will be plausibly
justified by a microscopic argument given later. The mean
field Hamiltonian for the SN state of the effective two-band

model is HMF ¼ H ð0Þ
MF þH ð1Þ

MF with the kinetic energy

term H ð0Þ
MF ¼

P
k;�

P
a¼1;2 "kac

y
ka�cka�, and the particle-

hole pairing term

H ð1Þ
MF¼

X

k;�;�0

X

a;b
a�b

½dabðkÞ ����0cykþQ0a�
ckb�0 þH:c:�: (2)

For URu2Si2, the crystal structure of which has the D4h

symmetry, the anisotropy of the spin susceptibility which
breaks fourfold symmetry down to twofold symmetry in
the xy plane implies that the order parameter belongs to
two-dimensional (2D) representation of theD4h symmetry,
and in the hidden order phase, fourfold symmetry in the 2D
space is spontaneously broken. Then, from the symmetry
properties of d12ðkÞ discussed above, a possible candi-
date is the Eg state with d12ðkÞ ¼ ið�1kykz;�2kxkz; 0Þ [or
ið�1kxkz;�2kykz; 0Þ] for small jkj. Here, the real parame-

ters �1 and �2 are determined from the self-consistent gap
equation.

According to the experiment [25], the axis of the Ising-
like anisotropy, which is spontaneously generated in the
HO phase, is parallel to the (1,1,0) direction. Since our toy
model has continuous rotational symmetry in the xy plane,
the analysis given here is applicable toURu2Si2 by rotating
the principle axes by �=4 around the z axis, i.e., x0 ¼ 1ffiffi

2
p �

ðx� yÞ and y0 ¼ 1ffiffi
2

p ðxþ yÞ. Following the experimental

observation, we assume that fourfold symmetry in the
x0y0 plane is spontaneously broken, resulting in the state
with d12ðkÞ k ð1; 0; 0Þ or (0, 1, 0) in this rotated spin frame.
The direction of d12ðkÞ is determined by the detail of the
electronic structure and spin-orbit interaction. However,
most of the following results do not depend on it. For the
tight-binding model, we choose

d 12ðkÞ ¼ ði�1�ðkÞ; 0; 0Þ; �ðkÞ ¼ sink�0 sinkz; (3)

where �0 ¼ x0 or y0.
At this stage, we note that the electron-hole pairing term

(2) is nonzero only when the nesting vector Q0 and the
momentum dependence of dabðkÞ fulfill the following

relation: e�iQ0ri � eiQ0rj � 0 for ri, rj satisfying �ij ¼P
k�ðkÞe�ikðri�rjÞ � 0. For (3) and Q0 ¼ ð0; 0; �Þ, this is

actually fulfilled. It is instructive to compare this property
of the SN phase with the unconventional spin density wave
(USDW) state considered in Refs. [3,6], the order parame-
ter of which is also given by Eq. (1) but with d12 a real even
function of k, because of broken time-reversal symmetry. It
is easy to see that, if Q0 ¼ ð0; 0; �Þ, and the momentum
dependence of d12ðkÞ is the same as (3), the particle-hole
paring term (2) vanishes, and hence, this type of the USDW
can not be realized. It is noted that the USDW is more
stabilized than the SN phase, if the order parameter dabðkÞ
(and hence, the particle-hole pairing interaction) is

antisymmetric with respect to the exchange of the band
indices a, b, or if higher harmonics of the order parameter
such as �ðkÞ ¼ sin2k�0 sin2kz is allowed.

We, now, calculate the anisotropy of the uniform spin
susceptibility, which characterizes the SN order, and was
experimentally detected in Ref. [25]. The anisotropy in the

x0y0 plane for our model is obtained as��ðTÞ � �y0y0 ðTÞ �

�x0x0 ðTÞ ¼ �2
B

P0
k

½tanh
Ek
2T

Ek
� 1

2Tcosh2
Ek
2T

� jd12ðkÞj2
4E2

k

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2k1 þ jd12ðkÞj2

q
, and the momentum sum

P0
k

is taken

over the nested part of the Fermi surface satisfying the
condition "kþQ01 ¼ �"k2. Also, we assume the BCS

mean-field-like T dependence of the amplitude of the gap
�1ðTÞ. To make a semiquantitative comparison with the
experimental data without referring to the details of the
band structure, we consider a ratio ��ðTÞ=��ð0Þ, for
which it is expected that effects of specific band structures
approximately cancel out. There are two parameters in this
calculation: one is the ratio of the energy gap at T ¼ 0 to
the transition temperature, i.e., �1ð0Þ=THO, and the other
is an overall normalization factor of the magnitude.
According to the recent scanning tunneling microscopy
(STM) measurement, the magnitude of the gap opened
on the Fermi surface via the hidden order transition is
�1ð0Þ � 4 meV [32,33]. Since THO ¼ 17:5 K, we choose
the parameter as �1ð0Þ=THO ¼ 2:6. Then, there is only one
fitting parameter, i.e., the overall normalization factor. We
choose the normalization factor to fit the theoretical result
at T ¼ 6 K to the experimental data at the same tempera-
ture. The calculated result of this one-parameter fitting
is shown in Fig. 1(a). In spite of simplicity of the model,
the theoretical result is surprisingly in good agree-
ment with the experimental observations, at least above
T=THO � 0:15. A slight discrepancy at low temperatures
may be ascribed to the superconducting transition. This
result provides strong evidence for the realization of the
SN state as the HO in URu2Si2. In Fig. 1(a), the T-linear
behavior of ��ðTÞ at low temperatures is seen, which is
raised by the existence of the line node of the order
parameter (3). The experimental data are also consistent
with this behavior above T=THO � 0:15.
The above scenario also has important implications for

magnetic properties of the HO phase. According to neutron
scattering measurements, there is a longitudinal spin fluc-
tuation with the wave number q ¼ Q0, which exhibits an
excitation gap in the HO phase [34]. Remarkably, the
magnitude of the spin gap �1:6 meV is much smaller
than the single particle energy gap �1 � 4 meV observed
via the STM measurements [32,33]. Furthermore, the spin
gap increases notably with increasing a magnetic field
applied along the z axis, Hz;, e.g., the spin gap for
Hz ¼ 17 T reaches to 2.5 meV [34]. These properties are
well explained by the present model. Using the mean field
Hamiltonian HMF and the random phase approximation,
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we calculate the longitudinal spin correlation function
�zzðq;!Þ¼�i

R1
0 dth½Szðq;tÞ;Szð�q;0Þ�iei!t for q ¼ Q0,

which is dominated by the transition between the band
"k1 and the band "k2 [36]. In Fig. 1(b), the imaginary
part of �zzðQ0; !Þ is plotted as a function of the frequency
!=�1, which indicates the spin excitation gap smaller than
the single-electron gap �1. As the magnetic field Hz in-
creases, the excitation gap increases substantially. These
behaviors are understood as a result of the existence of line
nodes of the gap jd12ðkÞj. The line nodes allow low-energy
spin excitations to develop below �1. When the system is
in the vicinity of magnetic criticality, a gap structure
appears for !< �1, which is also sensitive to applied
magnetic fields, as shown in Fig. 1(b). These results are
in good agreement with the experimental observation ob-
tained in Ref. [34]. Conversely, these neutron scattering
data strongly imply the existence of line nodes in the
energy gap. On the other hand, these experiments also
revealed that in addition to Q0, there is a longitudinal
incommensurate spin fluctuations with Q1 ¼ ð1:4�; 0; 0Þ
[15], which may be attributed to the nesting between the
hole band "k2 and another hole band denoted as "k3, as
suggested from the band calculations [22,30]. According to
the recent experiments, the magnetic excitation for the
incommensurate Q1 has an energy gap �4 meV below
THO [18,34,37]. In our scenario, the gap �4 meV opens
in the hole band "k2 in the SN state, while it does not in the
hole band "k3. Thus, the magnetic excitations due to
the transition between these two hole bands should exhibit
the excitation energy gap �4 meV at the wave vector Q1

rather than 2� 4 meV. This explains the above-mentioned
experimental result. To demonstrate this, we calculate the
spin correlation function �zzðQ1; !Þ for the mean field
Hamiltonian [36]. In this calculation, we postulate that
hot spots on the hole band 2 for this spin fluctuation are lo-
cated away from the gap node of jd12ðkÞj; i.e., jd12ðkÞj � 0
for k satisfying "kþQ12 � �"k3. Then, the sharp gap

edge appears at ! ¼ �1 in Im�zzðQ1; !Þ, as shown in
Fig. 1(c). In the case with magnetic fields Hz, the gap
edge shifts to ! � �1 þ 2H2

z =�1 [36]. Thus, the field
dependence of Im�zzðQ1; !Þ is much weaker than that of
Im�zzðQ0; !Þ [Fig. 1(c)]. This is also qualitatively in
agreement with the experimental results [34,37].

Some remarks are in order: (i) In the SN state, there are
staggered circulating spin currents [26,27]. When a uni-
form magnetic field parallel to (1, 1, 0) or (1,�1, 0) in the
original frame is applied, and electron spins are polarized,
the spin currents lead to the staggered orbital currents,
which induce staggered moment, as in the case of the
orbital current state [7]. In NMR experiments, broadening
of spectra under applied fields was observed [16,17]. Its
origin may be attributed to the staggered circulating cur-
rents of the SN state. The magnitude of the induced stag-
gered field raised by the circulating currents is estimated as
�1 Oe for the applied field H � 4 T, which is consistent
with the experimental results [17]. (ii) Note that the USDW
state with the spin quantization axis parallel to (1, 	1, 0)
also exhibits the same spin anisotropy as the SN state, and
may explain the experimental data of Ref. [25]. At this
stage, we cannot thoroughly exclude the possibility of the
USDW as a candidate of the HO, though, as mentioned
before, the particle-hole pairing interaction antisymmetric
with respect to the band indices, the origin of which is
microscopically unclear, is required for its realization.
(iii) The SN order parameter couples to a magnetic field
H as �ðd12 �HÞ2 in the free energy. This implies that the
nonlinear susceptibility �3 for a magnetic field H satisfy-
ing d12 �H � 0 exhibits a discontinuous jump at T ¼ THO

for the SN order (3). However, such an anomaly was
experimentally observed not for the in-plane field, but for
the H k z axis [3]. The discontinuous jump for the
H k z axis may be explained by postulating that the SN
vector d12 is not confined in the xy plane, but rather has a
nonzero out-of-plane component. This scenario may also
explain the change of the slope of the linear spin suscep-
tibility at T ¼ THO for the H k z axis. However, the ab-
sence of the jump for the in-plane field in the experiment
remains to be resolved. It is desirable to reexamine the
measurement of the nonlinear susceptibility using recent
high-quality samples. (iv) According to specific heat mea-
surements in magnetic fields parallel to the z-axis Hz, the
specific heat jump �C at T ¼ THO is almost constant as a
function ofHz, though the transition temperature decreases
as THOðHzÞ � THOð0Þ / �H2

z [38,39]. These behaviors are
explained by the SN scenario. The decrease of THO is
understood as a result of the decrease of the particle-hole
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FIG. 1 (color online). (a) Solid line: anisotropy of the spin susceptibility �� ¼ �x0x0 � �y0y0 in the SN phase versus T=THO. The
magnitude of�� is normalized by the value at T ¼ 0. Circle: experimental data quoted from [25].�1ð0Þ=THO ¼ 2:6. (b) Im�zzðQ0; !Þ
versus !=�1. �BHz=�1 ¼ 0 (solid), 0.1 (dotted), 0.2 (dashed), 0.3 (dot-dashed), 0.4 (double-dot-dashed). (c) Im�zzðQ1; !Þ versus
!=�1. �BHz=�1 ¼ 0 (solid), 0.1 (dotted), 0.2 (dashed), 0.3 (dot-dashed).
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pairing interaction due to the magnetic field [36]. Also, the
absence of the change of �C under applied fields is ex-
plained by taking into account the self-energy correction
arising from interactions with AF spin fluctuations [36].
Within this scenario, the specific heat jump is given by
�C� �2THO, where � is the correlation length for AF spin
fluctuations. If the system is in the vicinity of the AF
critical point, i.e., �2 � 1=T, �C is constant, though THO

is decreased by the magnetic field. (v) Experimental stud-
ies reported that under applied pressure, the discontinuous
phase transition from the HO state to the large-moment AF
state occurs [20], while the Fermi surfaces in both phases
are almost the same [19,21,23,24]. According to our sce-
nario, there are competing AF spin fluctuations and
fluctuations toward the SN phase transition in the system
(see below and supplemental material [36] for details).
Thus, applied pressure induces the change of effective
couplings between electrons and these fluctuations, result-
ing in the transition to the AF phase. Since the order
parameters of these phases have the different symmetries
that are not compatible with continuous phase transition,
the type of the phase transition is first order, which is in
agreement with experiments [17,20]. We stress that the
reconstructed Fermi surfaces in the SN phase and the AF
phase are the same in our scenario, because both of them
are reconstructed by the same nesting vector Q0.
This is also in agreement with experimental observations
[19,21–24].

Finally, we discuss microscopic mechanism of the SN
order for URu2Si2 [36]. We consider a scenario that orbital
fluctuations associated with the Fermi surface nesting
yields the SN order. The minimal model consists of the
three bands "ka with a ¼ 1, 2, 3, and mutual Coulomb
interaction between electrons. The SN order considered
here arises from the particle-hole pairings in the d-wave
channel which are formed between the electron band 1 and
the hole band 2. The Fermi surface nesting with the nesting
vector Q0 between these bands leads to this instability. An
effective pairing interaction in the d�0z-wave channel is

mediated via orbital fluctuations arising from the Fermi
surface nesting between "k3ð1Þ and "k2 with the nesting

vector Q1 (Q0). If the orbital fluctuations are sufficiently
strong, the SN order is stabilized [36].

In conclusion, we have demonstrated that the SN state
induced by the Fermi surface nesting is a promising can-
didate of the HO phase of URu2Si2, since it successfully
explains most of the experimental observations including
the recent experiment on fourfold symmetry breaking.
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