
Thermalization of Nonequilibrium Electrons in QuantumWires

Tobias Micklitz1 and Alex Levchenko2,3

1Dahlem Center for Complex Quantum Systems and Institut für Theoretische Physik, Freie Universität Berlin, 14195 Berlin, Germany
2Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

3Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
(Received 12 December 2010; published 11 May 2011)

We study the problem of energy relaxation in a one-dimensional electron system. The leading

thermalization mechanism is due to three-particle collisions. We show that for the case of spinless

electrons in a single channel quantum wire the corresponding collision integral can be transformed into an

exactly solvable problem. The latter is known as the Schrödinger equation for a quantum particle moving

in a Pöschl-Teller potential. The spectrum for the resulting eigenvalue problem allows for bound-state

solutions, which can be identified with the zero modes of the collision integral, and a continuum of

propagating modes, which are separated by a gap from the bound states. The inverse gap gives the time

scale at which counterpropagating electrons thermalize.

DOI: 10.1103/PhysRevLett.106.196402 PACS numbers: 71.10.Pm, 72.10.�d, 72.15.Lh

Introduction.—Relaxation processes and nonequilib-
rium dynamics in one-dimensional electron systems have
moved into the focus of recent theoretical [1–8] and ex-
perimental research [9–12]. One essential characteristic of
one-dimensional electrons is the absence of relaxation in
the case of a linear energy dispersion relation and a slow
relaxation if dispersion is nonlinear, inhibited by momen-
tum and energy-conservation laws [4,6]. Based on
momentum-resolved tunneling spectroscopy the peculiar-
ities of relaxation in one-dimesional electron systems have
been observed in recent experiments [9,11]. Moreover, the
violation of the Wiedeman-Franz law observed [13] at the
plateau of the electrical conductance in single channel
quantum wires can be qualitatively understood from the
different relaxation processes required for equilibration of
applied temperature gradients and chemical potentials.

In the presence of many transport channels relaxation of
electrons at low temperature is primarily provided by pair
collisions. A solution of the eigenvalue equation of the
two-particle collision integral in two and three dimensions
has already been given four decades ago at the early era of
Fermi liquid theory [14]. A remarkable result of that theory
is that the eigenvalue equation turns out to be exactly
solvable. In single channel wires, on the other hand, con-
servation laws severely restrict the phase space available
for scattering processes, and pair collisions do not provide
a relaxation mechanism. If electron density is not too low
then three-particle collisions [5,15] constitute the leading
order relaxation process. Unlike the two-particle collision
integral in higher dimensional systems, a spectral analysis
of the corresponding three-particle collision integral in
single channel wires so far is missing. This Letter aims
to fill this gap. We show that for specific momentum
configurations of the scattering states, relevant for energy
relaxation, the collision integral of spinless electrons can
be diagonalized analytically. We find that zero modes of

the collision integral are separated by a gap from a con-
tinuum of decaying modes. The gap value provides us the
time scale at which counterpropagating electrons, exposed
to a small temperature differences, thermalize.
Formulation of the problem.—Our motivation is to iden-

tify the time scale �th at which thermalization between out-
of-equilibrium counterpropagating electrons occurs in a
clean single channel quantum wires. We pursue this goal
by studying the spectrum of the three-particle collision
integral under the assumption that left- and right-moving
electrons inside the wire are initially at distinct equilibria,
characterized by different temperatures, with �T being the
temperature difference.
Within the Boltzmann kinetic equation approach for the

electron distribution function, _F ¼ �IfF g, microscopic
details of relaxation process are stored inside the collision
integral IfF g. In the following we specify IfF g for spin-
less electrons with quadratic energy dispersion, interacting
via Coulomb potential VðxÞ [16]. In the high density limit
interactions are weak, e2=@vF� � 1, here vF is the Fermi
velocity and � is the dielectric constant of the host mate-
rial, and the leading order relaxation process is due to
three-particle collisions:

IfF gp1
¼ � X

p2;p3

X
p10 ;p20 ;p30

W102030
123 ½F 1F 2F 3F h

10F
h
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h
30

�F 10F 20F 30F h
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h
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h
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Higher order scattering processes are suppressed by the
small interaction strength and phase space. In Eq. (1) we
introduced notations F i ¼ F ðt; x; piÞ and F h

i ¼ 1�F i.

The W102030
123 ¼ 2�

@
jh102030jV̂Ĝ0V̂j123icj2�ðEi � EfÞ is the

rate of three-particle scattering from the incoming
states p1;2;3 into the outgoing states p10;20;30 with ener-

gies EiðfÞ ¼
P

3
i "iði0Þ, respectively. An explicit form

of W for a generic two-body interaction potential

PRL 106, 196402 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
13 MAY 2011

0031-9007=11=106(19)=196402(4) 196402-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.196402


V̂ ¼ 1
2L

P
k1k2q

Vqĉ
y
k1þqĉ

y
k2�qĉk2 ĉk1 , where ĉyk (ĉk) is the

electron creation (annihilation) operator, has been recently

derived in Ref. [5]. We here merely mention that Ĝ0

denotes the free particle Green’s function, subscript
‘‘c’’ refers to irreducible scattering processes, L is wire
length, and Vq is the Fourier transform of the interaction

potential VðxÞ.
Because of nonlinearity of the collision integral in

Eq. (1) an exact analytical solution of the Boltzmann
equation is very difficult to find. A simplification is
possible within the linear response analysis in which
distributions entering Eq. (1) can be linearized around

an equilibrium state, F p ¼ fp þ fpf
h
pc p. Here fp ¼

½eð"p�"FÞ=T þ 1��1 is the equilibrium Fermi distribution
with "F the Fermi energy and temperature T, fhp¼
1�fp, and c p in response to the externally applied per-

turbation, in our case c p / ð"p � "FÞ sgnðpÞ�T.
Restricting to the linear response regime we insert above
distribution into the collision integral Eq. (1) and arrive at
the Boltzmann equation _c p1

¼ �Lfc gp1
, with the linear

collision operator

L fc gp1
¼ 1

f1f
h
1

X
p2 ;p3

p
10 ;p20 ;p30

Kfpig;fpi0 g
X3
i¼1

ðc pi
� c pi0 Þ: (2)

Here the kernel Kfpig;fpi0 g ¼ W102030
123 f1f2f3f

h
10f

h
20f

h
30 . A

spectral analysis of the linearized collision operator in
Eq. (2) under the above formulated assumptions is the
problem we address in the following.

Zero modes and symmetries.—Eigenfunctions of the
collision integral with eigenvalue zero (‘‘zero modes’’)
correspond to constant in time solutions of the
Boltzmann equation and are associated with the conserved
quantities in the system. Indeed, it is readily checked that
L in Eq. (2) is nullified by c E ¼ "p (energy conservation),

c P ¼ p (momentum conservation), and c N ¼ const (con-
servation of total particle number). Since we are interested
in thermalization we can further restrict to processes in
which all of the participating states are close to the Fermi
points. Then the difference in number of left- and right-
moving electrons, �N, is also conserved and c �N ¼
sgnðpÞ is an additional zero mode. We only briefly mention
that three-particle collisions changing �N require back-
scattering and are important for the relaxation of differ-
ences in the chemical potentials of counterpropagating
electrons [6].

Defining the Hilbert space of functions endowed with
scalar product hc pjc 0

pi ¼ 1
2mT

Rþ1
�1 dpfpf

h
pc pc

0
p it is

readily checked that L is positive Hermitian, implying a
spectrum of eigenvalues larger or equal to zero. The zero
modes form a basis of the four-dimensional subspace of
conserved quantities. Any c p that falls off this category

evolves according to the Boltzmann equation and eventu-
ally relaxes into one of the zero modes or their linear
combination. In general, the collision operator L may

have discrete and continuous parts of the spectrum.
However, only if the zero modes are separated by a well-
defined gap to a smallest nonvanishing eigenvalue the
concept of a relaxation rate is justified.
It is helpful to account for an additional symmetry of the

linearized collision integral. As a consequence of invari-
ance of the scattering kernel under reversal of momenta,
Kfpig;fpi0 g ¼ Kf�pig;f�pi0 g, L commutes with the inversion

operator �c p ¼ c�p. Therefore, eigenfunctions of L
have well-defined parity and the operator itself can be
decomposed into a direct sumL ¼ Lþ �L� of operators
L� acting in the mutually orthogonal subspaces of even
and odd-parity functions. (Notice that the Hilbert space
defined above decomposes into a direct sum of even and
odd-parity functions, mutually orthogonal to each other.)
As we are interested in the relaxation of an odd-parity
perturbation, c�p ¼ �c p, our main focus is on the spec-

trum of L�.
Spectrum of the linearized collision integral.—We start

the analysis from identifying small parameters in the prob-
lem. Fermi blocking in combination with conservation
laws restricts participating scattering states to momentum
strips of order �p� T=vF � pF around the Fermi points.
Denoting qi ¼ pi0 � pi the momentum transfer in a
collision we thus have the small parameters jqi=pjj�
T="F�1, where i, j ¼ 1, 2, 3. The energy is transferred
via the three-particle collision in which one of the incom-
ing electrons, say with momentum p3, scatters off two
other counterpropagating electrons (see Fig. 1 for the
six possible scattering processes where an electron with
p3<0 scatters off two right movers). Using momentum

FIG. 1 (color online). Three-particle scattering processes that
allow for the energy exchange between counterpropagating
electrons and thus lead to their thermalization. The matrix
elements h102030jV̂ Ĝ V̂ j123ic decompose into six contributions,
Að110; 220; 330Þ plus five permutations of primed arguments,
corresponding to the direct (a) and five exchange terms (b)–(f).
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conservation q2 þ q1 þ q3 ¼ 0 we can express en-
ergy conservation as p2ðq1þq3Þ�ðp1q1þq21þp3q3þ
q1q3þq23Þ¼0 which, solved for q3, shows that q3¼
q1ðp1�p2Þ=2pFþOððp1�p2Þ2=p2

F;q
2
1=p

2
FÞ. It becomes

clear now that energy transfer between the counterpropa-
gating electrons occurs via small portions of momentum
exchange vFjq3j � T2="F, and fjq3=q1j; jq3=q2jg � 1
present additional small parameters, while q1 ’ �q2 up
to corrections of Oðq2ðp1 � p2Þ=pFÞÞ.

A further important ingredient for our calculation is the
three-particle scattering rate for the Coulomb potential.

Expanding W102030
123 ¼ �102030

123 �ðEi � EfÞ�q1þq2þq3¼0 to

leading order in the above small parameters, we find
that the scattering rate depends only logarithmically on

the momenta transfer qi. Indeed, �102030
123 ¼ 2�

@
ð2e2� Þ4

½ðkFwÞ2
2L2"F

�2�2ðq1; q3Þ, with

�ðq1; q3Þ ¼ ½1þ 3ð�E þ ln½kFw�Þ� ln½2pFjq3j=q21�; (3)

where �E is the Euler constant. This result [Eq. (3)] applies
at not too low temperatures fTd=@vF; kFdg � 1 at which
screening of the nearby gate is not important. Technically
speaking, the typical Fourier component Vk of the interac-
tion potential then has wave number in the range d�1 �
jkj � w�1, so that Vk ’ 2e2

� ½ln2e��E

jkjw þ ðkwÞ2
4 ln2e

1��E

jkjw � [16].

The logarithmic qi dependence of the scattering rate is a
result of subtle cancellations between direct and various
exchange terms contributing to the scattering amplitude,
see also Fig. 1. It is owing to this property ofW that makes
an analytical diagonalization of L possible.

Our strategy is now to split the linearized collision
operator into two contributions

L fc g ¼ L0fc g þ �Lfc g; (4)

where L0 allows for an analytical diagonalization, while
corrections to the spectrum from �L turn out to be irrele-
vant for our problem (and may, in principle, be calculated
from perturbation theory). More precisely, we choose L0

as in Eq. (2) with kernelK0 resulting from the originalK
upon linearization of the quadratic energy dispersion,
i.e., upon substituting fp�pF

and �ðEi � EfÞ, respectively,
by g�p � ðe�vFp=T þ 1Þ�1, and �0ðEi � EfÞ � L

2hvF
	

½�q1þq2�q3�ðp1; p2;�p3Þ þ �q2þq3�q1�ðp1;�p2;�p3Þ�,
�ðp1; p2;�p3Þ ¼ ½�ðp1Þ�ðp2Þ�ð�p3Þ þ �ð�p1Þ�ð�p2Þ
�ðp3Þ�. That is the operator L0 corresponds to a problem
with linear dispersion relation. The expectation that cor-
rections to the spectrum from �L are small is, of course, a
consequence of the fact that three-particle scattering pro-
cesses which provide energy exchange involve all colliding
electrons near the Fermi points, while states at the band
bottom are not crucial for thermalization. Since the
above approximation preserves inversion symmetry,
½L0;�� ¼ 0, eigenfunctions of L0 have well-defined par-
ity. Given this property we may restrict the eigenvalue
equation L0fc ngp ¼ !nc

n
p to momenta p > 0 and then

extend solutions to negative values p < 0 by taking even
and odd parity combinations c p ¼ �ðpÞc n

p � �ð�pÞc n�p.

We next show that L0 can be transformed into a linear
second-order differential equation. As a first step, we adopt
logarithmic accuracy approximation to substitute the argu-
ment of the logarithm in the momentum dependent scat-
tering rate Eq. (3) by its typical value, q21=ðq3pFÞ ! 1, as
dictated by the conservation laws. The linear collision
operator with constant scattering rate can be reduced
then to

L0fc gpFþp1
¼ �0

�
L

2h
ðß2 þp2

1Þc pFþp1
� 1

ghp1

X
p2

ðp2 �p1Þ

	 ghp2
bp2�p1

ð2c pFþp2
� c pF�p2

Þ
�
; (5)

where ß ¼ �T=vF is characteristic momentum due to

thermal smearing of Fermi functions, bp¼ðevFp=T�1Þ�1

is the bosonic distribution function, ghp ¼ 1� gp, and

�0 ¼ ðLkFÞ2
h2

TLln22
"2F

ð2e2� Þ4½ðkFwÞ
2

2L2"F
�2ln2½kFw�. The sequence of

exact transformations leading to Eq. (5) can be summa-
rized as follows [16]. (i) It is convenient to organize
L0 into six contributions L0 ¼

P
s¼�

P
3
j¼1 l

s�
j where

ls�j fc g ¼ 1
g1g

h
1

P
p2p3

P
p10p20p30

Ks�
0 ½c j � c j0 � and Kþ�

0

(K��
0 ) describes processes in which the right-mover p1

scatters off one right- and one left-mover (two left-
movers). (ii) In the individual contributions ls�j we remove

two out of five momentum-integrations employing conser-
vation laws and complete two further integrations with
help of the identities:

P
pgpg

h
p�q ¼ L

h qbq,
P

qgpþqg
h
p�q ¼

� L
h pb�p, and

P
qqgpþqbq ¼ � L

h ðß2 þ p2Þgp. (iii) We

find that all terms l��
j fc g and lþ�

3 fc g are identical zero,

while lþ�
1 fc g þ lþ�

2 fc g can be summed to give Eq. (5).
We then introduce odd and even momentum combina-

tions with respect to the Fermi point

c�
p ¼

ffiffiffiffiffiffiffiffiffiffiffi
gpg

h
p

q
½c pFþp � c pF�p�; (6)

where the normalization factor is chosen for convenience,
and recast the eigenvalue problem for odd and even com-
binations, s ¼ �, as follows

!nc
ns
p1

¼ �0

�
L

2h
ðp2

1 þ ß2Þc ns
p1

�X
p2

3�sðp2 � p1Þc ns
p2

2 sinhvFðp2�p1Þ
2T

�
;

(7)

with �� ¼ 0, 1, respectively. At this stage we introduce
dimensionless momentum k ¼ vFp

�T , energy �n ¼ 2h
�0L

	
ð�vF

T Þ2!n, and notice that the kernel in Eq. (7) depends

on the difference of its arguments, which makes it conve-
nient to perform a Fourier transformation c n�

k ¼R
dx
2� c n�

x eikx and
R

keikxdk
sinhð�k=2Þ ¼ 2

cosh2x
. As a result, the ei-

genvalue equations for the Fourier images c ns
k reduce to

Schrödinger equations of a particle moving in a Pöschl-
Teller potential
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�
d2

dx2
þ�n � 1þ 2	 3�s

cosh2x

�
c ns

x ¼ 0; (8)

which can be solved with help of an operator-algebra tech-
nique known from the harmonic oscillator problem [17].

The eigenvalue problem in Eq. (8) allows for one even-
and one odd-parity bound state�n ¼ 0 of the form c 0þ

x ¼
1= coshx and c 0�

x ¼ �3 sinhx=cosh2x, respectively [18].
Upon inverse Fourier transformation and extension to
negative momenta in the above prescribed manner this
gives the four zero-modes c 0þ

N ¼ const, c 0�
�N ¼ sgnðpÞ,

c 0�
P ¼ p, and c 0þ

E ¼ jpj. As already discussed, the first
three functions are consequences of conservation of total
particle number, momentum and the difference in number
of left- and right-moving electrons. The fourth zero mode
expresses conservation of energy for the linearized spec-
trum. Of course, these four zero modes could have been
directly inferred from L0.

More relevant for our problem is the fact that these
bound-state solutions are separated by a gap �� ¼ 1
from a continuum of propagating modes andL0, therefore,
possess a well-defined smallest nonvanishing eigenvalue.
In order to associate this latter with the thermalization rate,
we have to make sure that this gap is also present in the
original collision operator L�. Employing that eigenfunc-
tions of L0 form a complete set we may express L� in
terms of its odd-parity subset. Finally, reminding that c �N

and c P are also nullified by L�, it is evident that the
smallest nonvanishing eigenvalue of L� is of order �! ¼
minc�

k
fhc�

k jLjc�
k0 ig, with fc�

k g the set of eigenstates

corresponding to odd-parity propagating solutions of
Eq. (8). Since matrix elements jhc�

k j�Ljc�
k0 ij �jhc�

k jL0jc�
k0 ij it readily follows that L� and L�

0 share a

gap of same order. Employing then �� ¼ 1, restoring
original units, and inserting the explicit form of �0 we
arrive at the thermalization rate

1=�th ¼ cð"F=@Þðe2=@vF�Þ4�2ðkFwÞðT="FÞ3; (9)

where coefficient c ¼ ln22=2�6 and function �ðxÞ ¼
x2 lnx. Equation (9) presents the main result of this
Letter. The temperature dependence of Eq. (9) can be
understood from a simple phase-space argument. To first
approximation ��1

th follows from the out-scattering part of

the collision integral, 1=�out /
P

fpigKfpig, where two out

of the five momenta fpig are fixed by the conservation laws,
while the remaining three extend over momentum range set
by the temperature broadening �p� T=vF of the Fermi
distributions. The scattering rateW ’ const and, therefore,
1=�out / ðT="FÞ3 [19].

Conclusions.—We have analyzed the spectrum of the
three-particle collision integral in a one-dimensional elec-
tron system. We found that zero modes, associated with the
conservation laws, are separated by an energy gap from a
continuum of propagating modes, and identified the gap
with the relaxation rate ��1

th relevant for thermalization of

counterpropagating electrons. Our analysis applies to clean
single channel quantum wires of spinless electrons at not
too low densities. It is highly desirable to extend spectral
analysis to lower densities where interactions become
strong, and also to account for effects of spin-charge
coupling.
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