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We study real-time dynamics of a charge carrier introduced into an undoped Mott insulator propagating
under a constant electric field F on the 7-J ladder and a square lattice. We calculate the quasistationary
current. In both systems an adiabatic regime is observed followed by a positive differential resistivity
(PDR) at moderate fields where the carrier mobility is determined. Quantitative differences between the
ladder and two-dimensional (2D) systems emerge when at large fields both systems enter the negative
differential resistivity (NDR) regime. In the ladder system Bloch-like oscillations prevail, while in two
dimensions the current remains finite, proportional to 1/F. The crossover between the PDR and NDR in
two dimensions is accompanied by a change of the spatial structure of the propagating spin polaron.
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Introduction.—The real-time response of interacting
many-body quantum systems remains in many aspects an
unexplored field that has recently attracted significant at-
tention. Understanding of the time-dependent phenomena
becomes vital for various branches of physics including
condensed matter [1], nanostructures [2] and optical lattice
systems [3,4]. Since only very few cases are exactly
solvable, the vast majority of unbiased results has been
obtained from numerical approaches like exact diagonal-
ization (ED) [5,6], time-dependent density matrix renor-
malization group [7] or nonequilibrium dynamical
mean-field theory [8]. Among others, the electric-field
induced breakdown of the Mott insulator (MI) [5,9-11],
nonequilibrium transport in nanostructures [12,13] and the
relaxation of correlated systems after the photoexcitations
[14,15], represent the well—studied examples of nonequi-
librium phenomena which are important both for funda-
mental understanding of strongly correlated systems as
well as for their potential applications.

Most of theoretical studies so far considered the break-
down of undoped MI, when the threshold value of the
electric field exceeds experimental value [9] by a few
orders of magnitude (see discussion in Ref. [11]). It in-
dicates that other transport mechanism becomes active at
energies much lower than the Mott-Hubbard gap. In this
Letter we invegstigate a nonequilibrium response of a
charge carrier doped into the insulator and driven by an
uniform electric field F. Understanding of this subject on
one hand widens our knowledge of a charge carrier doped
into the antiferromagnetic (AFM) background [16,17], on
the other, it represents a fundamental problem of a quan-
tum particle moving in a dissipative medium [18].

Having in mind strongly correlated systems, we inves-
tigate the #-J model where the particle driven by a constant
electric field dissipates the energy by inelastic scattering on
spin degrees of freedom. We use numerical approaches to
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treat the #-J model at zero temperature on two different
system geometries, i.e., a ladder with periodic boundary
conditions and an infinite two-dimensional (2D) square
lattice.

The most important finding of this Letter concerns the
current-field characteristic, where the linear part with a
well-defined mobility is followed by a strongly nonlinear
one with a negative differential resistivity. Numerical results
reveal also adiabatic evolution for very weak fields (below
the linear regime) and strong Bloch oscillations (BO) in the
opposite limit of large F. These qualitative results hold for
both the geometries. The most prominent difference be-
tween the ladder and the 2D case emerges at large field
where in the latter system due to different topology, allow-
ing for transverse charge carrier motion, BO remain damped
and the steady current decreases with field as 1/F.

Model.—We consider a charge carrier within the #-J
model threaded by a time-dependent magnetic flux:

H=—1, Y [e0ef &, + He]+ DS -8, (1)
aj),o 1j)

where ¢; , = ¢j (1 — nj_,) is a projected fermion opera-
tor and (1j) denote nearest neighbors. The constant electric
field F is switched on at time ¢+ = 0 and is measured in
units of [#y/epa], where e is the unit charge and a is the
lattice distance. We set ty = i = eq = a = 1. For the lad-
der the charge current operator for ¢ > 0 reads

I=ityy (e7Fet, . &, —He), )
jo

where F acts along the ladder’s leg and ¢,;(1) equals —Ft
and 0 for hopping in the % and y direction, respectively.

At this stage it is instructive to recall a simple relation
between the current j(r) = (I(r)) and the total energy
E(r) = (H(¢)) [19], E(t) = FI(f), which allows one to
calculate the steady component of j(r)
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where AE(t) = E(t) — E(0).

Ladder—The real-time response of a ladder with L
rungs is studied in the full Hilbert space by means of ED.
Applying the Lanczos technique we have determined the
initial ground state |¥(z = 0)) at p, = (77/2, 0) [20]. The
time evolution of the initial state is calculated by step-vise
change of the flux ¢,;(¢) in small time increments 67 < 1,
employing at each step Lanczos basis generating the evo-
lution |W(r — 81)) — |W(1)) [19,21].

Figure 1(a) demonstrates how the total energy changes
in time. One can identify three regimes/limits of F: the
adiabatic regime (AR) for F — 0, the Bloch—oscillations
regime (BR) for ' >> 1, and the dissipative regime (DR)
for intermediate F. In the adiabatic limit, E(z) follows the
ground state dispersion Ey(p) with p = po + F£. In the
ladder Ey(p) is separated from excited states by a finite
gap, related to spin gap. The dispersion is a quasiparticle
(QP) one; i.e., it follows the behavior of a single carrier
with the periodicity Ap, = 2. As a result E(r) oscillates
with the Bloch frequency wyz = 27/tz = F also in AR.
Because of finite gap, qualitatively similar behavior re-
mains even for |F| > 0. We expect that the crossover
from AR to DR is connected with a transition through
the gap resembling the Landau-Zener transition through
the Mott-Hubbard gap [5]. Hence, the threshold F' should
be determined by J.

Figure 1(a) shows that E(¢) is monotonic only in DR
where j(r) does not change sign. Other regimes (AR, BR)
are characterized by strong current oscillations. Figure 1(a)

6F(a)J20.6 F=02.-
F——.1L=8 DR ‘,_’_
Sap Lz 4
E . 4 F=6.0
oL BR S
I F=0.006 =~ | |
0 FAVRTALIAN 2 .
o 1 2 3 i, 0 02 ;s 04
s T T T3 06T .
Ll (b) L=12 F=0.1 | L (d)
A0 =06 --F=027 4] i
=3 —F=04 - .
\d( 5 d 4 |,\ I
1 02r © J1=0.3 p=1.68 "]
0 ] I @ J=0.6 p=1.30 |
1 L 1 0

2 3 t'/tB 00102 03 04 &
FIG. 1 (color online). Ladder with L rungs: (a) increase of
energy AE(7r) in different regimes; (b) real-time current j(z)
normalized by kinetic energy a(t) = j(t)/(F|E(t)]) (note the
steady F-independent ratio); (c) kinetic energy E;, vs t/tg
(inset) and t/Ltg (main); (d) steady current j vs F. Dotted line
in (a) shows AE(r) estimated from the mobility u shown in (d)
as linear fits j = wF. J = 0.6 is used in (a)-(c).

together with Eq. (3) allow one to estimate j as a function
of the electric field. Clearly j is maximal in DR; therefore,
there exists a corresponding ‘“‘optimal” F. Substantial
differences between the regimes show up also in the kinetic
energy related with the movement along the X direction,
E,. = (H,,), where H, = —tozj,,,(e_"FtE;.rH’gEj,(, +
H.c.). We have found that E,, (¢) oscillates in AR and
BR. This quantity is always negative in AR, whereas in
BR it takes on negative as well as positive values.
Therefore, BR resembles the BO of noninteracting parti-
cles in that both j(¢) and E,(¢) change sign.

Nonzero j in DR implies a steady growth of energy due
to the Joule heating (although we are not dealing with well
defined thermalization). This effect is limited by the sys-
tem size since a carrier driven by constant F' propagates
many times around the ladder with finite L, thus steadily
excites the spin background and increases its effective
temperature. Figure 1(a) shows that AE(r) deviates con-
siderably between different L at time #; = 215. As there is a
single charge carrier, the quantity r(r) = [ d7j(1) =
AE(t)/F [see Eq. (3)] can be viewed as a distance traveled
by a carrier within the time-interval (0, 7). For noninteract-
ing case AE(r) <4 and r(t) <4/F, which is the Stark
localization length [22]. Here, we have found that
r(t;) ~ L confirming that the finite-size effects originate
from heating of the spin background when carrier repeat-
edly encircles the ladder.

However, even for ¢ > ¢, one can follow the behavior in
a controlled way. Previous analysis of 1D system of spin-
less fermions has shown that heating can be accounted for
by a renormalization of the kinetic energy, as a sum rule for
the optical conductivity o(w) [19]. Results in Fig. 1(b)
show that the same reasoning can be applied to the 7-J
ladder. In particular, the ratio a(z) = j(1)/(F|E.(1)])
reaches already at short #/75 nearly a constant value that
is independent of F' and L. Therefore, the original problem
concerning the evaluation of j can be reduced to finding
E;, = E;,(t — ) in the limit L — oo.

A straightforward expectation is that for n-times larger
system (L — nL) it takes n times longer to reach the same
average temperature of the spin background. It explains the
E,, o E(t/L) scaling visible for > ¢, in Fig. 1(c). The
initial value of E}, in this time domain represents the upper
bound on E;, when L — oo. On the other hand, for r < t,
results for Ey,(7) merge without any rescaling of time [see
the inset in Fig. 1(c)]. Hence the final value of Ej, in the
latter time—domain poses the lower bound on Ej . These
bounds on Ej, together with the ratio a(¢) allow one to
extract j [see Fig. 1(d)]. Within presented range of F, in the
DR nonlinear effects are weak and one can easily estimate
the hole mobility: u ~ 1.7 for J = 0.3 and u ~ 1.3 for
J = 0.6. However, significant nonlinear effects have to
show up for larger fields since j is maximal for a finite
F. This observation together with the value of u are the
main results for the ladder system.
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2D square lattice.—Since in the ground state a single
carrier in 2D lattice carries momentum k, = (7/2, 7/2),
we set ¢y;(t) = —F1/+/2 for the £ as well as the § direc-

tion, and wp = F/~/2. Accordingly, we also define and
calculate the modified current j(¢), Eq. (2), along the
diagonal. We employ an ED method at defined over a
limited functional space (EDLFS) which describes proper-
ties of a carrier doped into planar ordered AFM [17]. One
starts from a translationally invariant state of a carrier in
the Néel background |¢() = c [Néel). The kinetic part
H, as well as the off-diagonal spin-flip part H, of the
Hamiltonian (1) are applied up to N, times generating
the basis vectors: {|¢]")} = [H(F = 0) + H,]"|¢,) for
n, =0,...,N,. The ground state |W(r = 0)) and its time
evolution under electric field are calculated within the
limited functional space in the same way as previously
for the ladder within the full Hilbert space. The advantage
of EDLFS over the standard ED follows from systematic
generation of selected states which contain spin excitations
in the vicinity of the carrier. It enables investigation of the
dynamics of large systems, which are far beyond the reach
of ED. Since N, determines the accessible energies (spin
excitations), this quantity poses limits on the maximal
propagation time characterized by a steady growth of
energy. We set N;, = 14 while smaller values of N, are
used to establish the time window, where results are
independent of N, [see inset in Fig. 2(a)].

AR at small F = 0.1 is clearly seen from Figs. 2(a) and
2(b) that show AE(z) and j(z) after the field has been
switched on at t = 0. Both quantities are consistent with
the adiabatic propagation along the QP band with a period
t, = tg/2, consistent with the AFM long range order. In
the DR the carrier starts to move due to the constant field,
it emits magnons and, consequently, after propagation

FIG. 2 (color online). 2D lattice: (a) increase of energy AE(z)
for J = 0.3, various F (main) and N, = 12, 13, 14 (inset);
(b) real-time current j(z), j from Eq. (3) (dotted-dashed lines);
(c) steady current j vs F fitted by j = wF (dashed lines) and
j = b/F (solid lines) in PDR and NDR regimes, respectively.

through the transient regime /t5 << 1, it develops a finite
average velocity as seen for F = 0.6 and 1.4. DR is
characterized by a constant current and a linear increase
of the total energy of the system. To calculate the current
we make use of Eq. (3) where the linear increase of AE(r)
provides the value of j. Indeed, linear dotted-dashed fits
in Fig. 2(a) indicate that the system has already reached
the quasi stationary state. We plot the extracted values of
j as dotted-dashed horizontal lines in Fig. 2(b). Similar
approach has recently been applied to the problem of a
driven Holstein polaron [18]. At large field, F = 3, j(7) is
consistent with a damped BO with 7, < 15, signaling the
onset of BR.

Figure 2(c) displays j-F characteristics in DR for
J = 0.3 and J = 0.6. Each point has been calculated from
Eq. (3) and then compared with j(z), as demonstrated in
Figs. 2(a) and 2(b). The most remarkable property is a peak
at F dividing DR into two subregimes, i.e., the regime
of positive differential resistivity (PDR) for F' < F; and the
regime of negative differential resistivity (NDR) for
F > F,. The value of the crossover field F,, scales with
the exchange energy J. From curves in Fig. 2(c) we find
Fo=~2.3J. This is consistent with an intuitive expectation
that the onset of the NDR regime emerges when the energy
gained by a single hop exceeds the maximal energy of
one-magnon excitation. Consequently, the real-space
propagation of a carrier exhibits qualitatively different
behavior in both regimes. This is illustrated in Fig. 3
which displays spin deformation function C(r) around
the carrier at different times. We define C(r) =
Silni | SENS = S5, 1) with §3%! = =1 In the PDR
regime and for F = 0.6 spin excitations predominantly
emerge behind the traveling carrier indicating that the
average charge velocity v, is larger than magnon velocity
v, =+2J,ie b, = ] > v, (see the upper panel of Fig. 3).
A more complex pattern characterizes the NDR regime
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FIG. 3 (color online). 2D lattice with J = 0.3. Snapshots of the
spin deformation C(r) in the vicinity of hole [placed at (0,0)],
taken at different times #/75. Solid arrows indicate direction of
the electric field.
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where at F =3, v, <wv, (lower panel of Fig. 3) and
enhanced spin excitations develop also in front of the
carrier. Moreover, C(r) displays a distinct transverse ori-
entation with respect to the field direction. This signals an
increased transverse and longitudinal carrier oscillation
that serves to release the excess energy to the unperturbed
spin background.

In the PDR regime (dashed lines in Fig. 2(c)] linear fits
of the current increase provide an estimate for the carrier
mobility, which yields w ~ 1.3 for / = 0.3 and u ~ 0.8
for J = 0.6. These values are in agreement with ED cal-
culations using the linear—response theory [23] and in-
dicate that carrier mobility increases with growing
correlations. In the NDR regime a scaling j~ 1/F is
found, Fig. 2(c). This is consistent with incoherent hopping
between Stark states appropriate for dispersive boson ex-
citations [24], in contrast to coherent hopping in the case of
dispersionless phonons leading to j « 1/ JF [18).

Discussion.—At small F the ladder and the 2D system
exhibit adiabatic propagation with j = 0. The validity of
AR is closely connected with the stability of the lowest QP
band. While this is more evident for the ladder (due to a
gap), the gapless (acoustic) magnons in 2D lattice require
more care. Nevertheless, our results show that the condi-
tion for Cherenkov radiation of magnons v(k) > v, = +/2J
is for J = 0.3 never fulfilled. In part, because the QP
bandwidth is limited by J and not by ¢. For J = 0.3 we
obtain maximal charge velocity v,,,x = 1.36J while for
J = 0.6, v« = 1.10J. Moreover, the QP weight remains
finite throughout the whole Brillouin zone [17,25].

With increasing F both systems enter DR where the
quasistationary current is proportional to F, leading to
well defined mobility being even quantitatively close for
both cases. The mechanism of dissipation is clearly the
emission of spin excitations. Still the dissipation is due to
topological difference (in particular due to the possibility
of spin perturbation transverse to the direction of the
carrier propagation) more efficient within the 2D lattice
leading to stronger damping of the BO and finite j o« 1/F.
Consequently, quasistationary current on the square lattice
occurs up to much larger F' than in the ladder where in the
same regime strong BO with j ~ 0 prevail.

Surprisingly, the undoped [11] and lightly doped MI
show the same sequence of the field—regimes: j is zero
or exponentially small for sufficiently weak F (AR in the
present case); for larger F the linear j-F dependence is
restored (DR); finally, for very large F the response is
dominated by the BO (BR). However, in doped and un-
doped MI these regimes occur at exceedingly different
fields. In particular, the DMFT studies of the strong-U
limit [11] reveal that the threshold field for the dielectric
breakdown of undoped Ml is Fyy, > 1, which is an order of
magnitude above the field discussed here.
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