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A novel approach for the study of parallel transport in magnetized plasmas is presented. The method

avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic

magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the

fractal structure of the devil’s staircase radial temperature profile. In fully chaotic fields, the temperature

exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local

closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the

effective radial heat transport is incompatible with the quasilinear diffusion model.
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The study of transport in magnetized plasmas is a prob-
lem of fundamental interest in controlled fusion, space
plasmas, and astrophysics research. Three issues make this
problem particularly challenging: (i) the extreme anisotropy
between the parallel (i.e., along the magnetic field), �k, and
the perpendicular, �?, conductivities (�k=�? may exceed

1010 in fusion plasmas); (ii) magnetic field-line chaoswhich
in general complicates (and may preclude) the construction
ofmagnetic field-line coordinates, and (iii) nonlocal parallel
transport in the limit of small collisionality. As a result of
these challenges, standard finite-difference and finite-
element numerical methods suffer from a number of ail-
ments including the pollution of perpendicular dynamics
due to truncation errors in the discretization, the lack of a
discrete maximum principle, and potentially insurmount-
able problems in the inversion of the discretized equation
due to singularities of the parallel transport operator [1].
Previous work partially addressing some of these issues
include finite-element numerical implementation of non-
local heat transport [2], the use of high-order discretizations
to mitigate numerical pollution in finite-difference [3,4]
and finite-element methods [4,5], the use of limiters at the
discrete level in finite differences [6] and finite elements [7]
to enforce a maximum principle, and the use of ‘‘ghost
surfaces’’ in steady-state solutions [8,9].

Motivated by the strong anisotropy typically encoun-
tered in magnetized plasmas (�k=�? � 1010), we study

parallel heat transport in the extreme anisotropic regime
�? ¼ 0. To overcome the numerical and algorithmic chal-
lenges discussed above, we present a novel Lagrangian
Green’s function approach. The proposed method bypasses
the need to discretize and invert the transport operators on a
grid and allows the integration of the parallel transport
equation without perpendicular pollution, while preserving
the positivity of the temperature field at all times. The
method is applicable to local and nonlocal transport in
integrable or chaotic magnetic fields.

As an application, we study radial heat transport in
cylindrical geometry in weakly chaotic and fully chaotic

magnetic fields. The weakly chaotic case is presented to
illustrate the accuracy of the method. Going beyond pre-
vious studies [8], we unveil the fractal structure of the
devil’s staircase in the previously inaccessible �? ¼ 0 re-
gime. This result opens the possibility of a deeper under-
standing of the role of cantori which have been observed to
act as partial transport barriers in numerical studies [8,9]
and experiments [10]. The second application pertains to the
study of heat transport in fully chaotic fields. This has been a
problem of considerable interest in fusion and astrophysical
plasmas since the pioneering work in Refs. [11,12]. Here,
we present novel results on the self-similar spatiotemporal
evolution of the radial temperature profile and show
that, contrary to what is typically assumed in transport
studies, the effective radial transport is not diffusive. In
particular, transport does not adhere to the Fourier-Fick
prescription that assumes a local linear relation between
the radial heat flux and the radial temperature gradient.
Our starting point is the heat transport equation in a

constant-density plasma

@tT ¼ �r � q; (1)

where q is the heat flux. For local transport, in the

limit �? ¼ 0, q ¼ ��k½b̂ � rT�b̂, where b̂ ¼ B=jBj.
Substituting this flux into (1), we get @tT ¼ �@sqk,
qk ¼ ��k@sT, where @s ¼ b̂ � r is the derivative along

the field line, and we have assumed the tokamak ordering
@s lnB � 0. For nonlocal transport, we follow
Refs. [2,13,14] and consider the closure

qk ¼ ��k
�

Z 1

0

Tðsþ zÞ � Tðs� zÞ
z

dz: (2)

In Fourier space, both transport models can be written in
the particularly compact form

@tT̂ ¼ ��kjkj�T̂; (3)

where T̂ is the Fourier transform of T. For the local closure,
� ¼ 2, whereas for the nonlocal closure in Eq. (2), � ¼ 1.
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In principle, �k can have a spatial dependence, but it must

be constant along field lines, i.e., @s�k ¼ 0.
The proposed method is based on the Green’s function

solution of Eq. (3) along the magnetic field. The unique
magnetic field-line trajectory rðsÞ (parametrized by the arc
length s) that goes through a point rp is given by the

solution of dr
ds ¼ b̂, rðs ¼ 0Þ ¼ rp. Thus, given an initial

condition in the whole domain, Tðr; t ¼ 0Þ, the tempera-
ture at r ¼ rp at time t is given by

Tðrp; tÞ ¼
Z s2

s1

T0½rðsÞ�G�ðs; tÞds; (4)

where T0½rðsÞ� ¼ T½rðsÞ; t ¼ 0� is the initial condition
along the field line. G� is the Green’s function defined as
the solution of the initial value problem of Eq. (3) for a
Dirac delta function initial condition in space. For un-
bounded field lines [ðs1; s2Þ ¼ ð�1;1Þ], the Green’s func-
tion is given by

G�ðs; tÞ ¼ 1

2�

Z 1

�1
e��ktjkj��iksdk: (5)

For � ¼ 2 (local transport), Eq. (5) gives the Gaussian
distribution

G2ðs; tÞ ¼ 1

2
ffiffiffiffi
�

p ð�ktÞ�1=2 exp

�
� s2

4�kt

�
; (6)

and for � ¼ 1 (nonlocal, free-streaming transport), it gives
the Cauchy distribution

G1ðs; tÞ ¼ ð�ktÞ�1

�

1

1þ ðs=�ktÞ2
: (7)

For 1<�< 2, G� ¼ ð�ktÞ�1=�K�;0½ð�ktÞ�1=�s�, where

K�;0 is the symmetric �-stable Levy distribution [15].

For more general closures [2,14], the Green’s function
must be computed numerically. Here we limit attention
to unbounded field lines. However, transport along
bounded lines, including periodic lines in two and three
dimensions or lines intersecting boundaries, can also be
studied with the appropriate Green’s function. The numeri-
cal integration of the field-line trajectories was done by
using the high-order adaptive ordinary differential equa-
tion solver ODEPACK. We have thoroughly verified the
numerical implementation against analytical solutions.

At this point, it is important to indicate a fundamental
difference between our work and the numerical implemen-
tation of the nonlocal closure discussed in Refs. [2,14]. In
these references, the flux is calculated by integrating the
transport kernel along the field lines. But, once the flux is
computed, the Lagrangian approach is abandoned and the
flux is mapped to Gaussian quadrature points for the finite-
element standard integration of the temperature evolution
equation on a grid. In contrast, in the method proposed
here, the assumption �? ¼ 0 allows the use of a fully
Lagrangian approach that completely bypasses the use of
finite differences or finite elements, thus circumventing the
numerical issues discussed earlier.

We assume a periodic, straight cylinder configuration of
length L ¼ 2�R with R ¼ 5. The magnetic field consists
of a perturbed tokamaklike equilibrium of the form B ¼
ðrB=�Þ=½1þ ðr=�Þ2�ê� þ B0êz þB1ðr; �; zÞ with a mono-
tonic q, B0 ¼ 1, and B=B0 ¼ 10�1. To fit a spectrum of
resonant modes with n=m ranging from 4=5 to 1=5, we
choose � so that qmin ¼ 1:24 � 5=4 and qmax ¼ 5. The
magnetic potential of the perturbation, B1 ¼ r� Azêz,
consists of a superposition of modes Azðr; �; zÞ ¼P

m;nAmnðrÞ cosðm�� nz=Rþ �mnÞ, with
Amn ¼ �aðrÞ

�
r

r�

�
m
exp

��
r� � r0ffiffiffi

2
p

�

�
2 �

�
r� r0ffiffiffi

2
p

�

�
2
�
; (8)

� ¼ 10�4, and � ¼ 0:5. For each ðm; nÞ, the values of r�
and r0 are chosen so that the safety factor satisfies qðr�Þ ¼
m=n and dAmn=drðr ¼ r�Þ ¼ 0. The prefactor ðr=r�Þm
is included to guarantee the regularity of the radial
eigenfunction near the origin, r� 0. The function
aðrÞ ¼ f1� tanh½ðr� 1Þ=0:05�g=2 is introduced to guar-
antee the perturbation to vanish at r ¼ 1 and thus the
existence of well-defined flux surfaces at the plasma
boundary.
In the study of transport in weakly chaotic fields, only

two modes ðm; nÞ ¼ ð5; 2Þ; ð4; 1Þ were included. As the
Poincaré plot in Fig. 1 shows, in this case the magnetic
field exhibits a rich fractal-like structure resulting from
the existence of higher-order resonances. In this and all
the subsequent results, c ¼ r2=ð2R2Þ denotes the radial
flux coordinate. As discussed in Refs. [8,9,16], weakly
chaotic fields give rise to devil’s staircase temperature
profiles in which higher-order resonances lead to flat
spots in the profile, while Kolmogorov-Arnold-Moser
invariant circles and cantori lead to strong gradients.
Our numerical method is able to find an accurate solution
of the radial temperature profile at arbitrary radial reso-
lutions. To illustrate this, we show in Fig. 2 the fractal
structure of devil’s staircase in the previously inaccessible
limit �k=�? ! 1. The plots shows the time-asymptotic,

radial temperature profile along the � ¼ 2:7 horizontal
line in Fig. 1, corresponding to the initial condition T0 ¼
1� 2R2c . Note that the steady state is the same in the
local and the nonlocal cases. This is because, asymptoti-
cally, both transport operators enforce constant tempera-
ture along field lines.
To study transport in a fully chaotic magnetic field, we

consider a set of 21 strongly overlapping modes. In this
case, the Poincaré plot (not shown) is fully hyperbolic and
does not exhibit any structure. The initial condition
consists of a narrow ‘‘cylindrical shell’’ of the form
T0 ¼ exp½�R2ðc � c 0Þ2=�2�, with c 0 ¼ 0:18 and
� ¼ 0:05. Figure 3 shows the time evolution of the
radial profile of the temperature averaged in � and z, hTi,
in the local and the nonlocal (free-streaming) regimes. In
both regimes, the temperature exhibits an asymptotic self-

similar evolution of the form hTiðc ; tÞ ¼ ð�ktÞ�	=2Lð
Þ,
where the similarity variable is defined as 
¼ðc �c 0Þ=
ð�ktÞ	=2, with 	 the scaling exponent. From here, it follows

PRL 106, 195004 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
13 MAY 2011

195004-2



that the second moment scales as �c 2 � t	. Consistently
with Refs. [11,12], we find subdiffusive scaling (	 ¼ 1=2)
in the case of local transport (� ¼ 2) and diffusive scaling
(	 ¼ 1) in the case of free streaming (� ¼ 1). However,
the study of the properties of the scaling function provides
important transport information beyond the scaling of the
second moment. As Fig. 3 shows, for local parallel trans-
port the scaling function is a stretched exponential. In
contrast, the scaling function in the nonlocal case is
strongly non-Gaussian and exhibits an algebraic decay.

A key issue in the study of heat transport in magnetically
confined plasmas is to understand the effective radial en-
ergy transport, which ultimately determines the energy
confinement time of the system. Within the standard
diffusion paradigm, the study of radial transport is based

on the Fourier-Fick prescription. This prescription assumes
that the radial heat flux and the radial temperature gradient,
averaged over z and �, satisfy hq � êc i ¼ ��effhrT � êc i,
where êc ¼ êr is the unit vector in the radial direction.

Although this prescription is used to model a wide range of
transport problems, recent studies have questioned its va-
lidity in the presence of nondiffusive and nonlocal trans-
port phenomena (see, for example, Refs. [15,17,18], and
references therein). In fact, in what follows, we show that,
unless one incorporates unphysical spatiotemporal
dependencies in �eff , the effective radial heat transport
resulting from parallel transport in fully stochastic 3D
magnetic fields is inconsistent with the local diffusion
assumption. Our approach is based on the comparison

FIG. 1 (color online). Poincaré plot of the weakly chaotic
magnetic field used in the solution of the parallel heat transport
equation shown in Fig. 2.
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FIG. 2 (color online). Radial temperature profile of the time-
asymptotic solution of the parallel heat transport equation for the
weakly chaotic magnetic field in Fig. 1. The zooms in the
successive panels unveil the fractal structure of the devil’s stair-
case profile.

FIG. 3 (color online). Self-similar spatiotemporal evolution of the radial temperature profile in a fully chaotic magnetic field. The
left panel shows the local transport (� ¼ 2) case with subdiffusive scaling exponent 	 ¼ 1=2. The dashed line denotes a stretched-
exponential fit L� exp½�ðj
j=�Þ�� with � � 1:6 and � � 0:0095. The right panel shows the nonlocal transport (� ¼ 1) case with
diffusive scaling exponent 	 ¼ 1. In this case, the scaling function is strongly non-Gaussian and, as the dashed-line fit shows, it
exhibits algebraic decay of the form L� 
�3.
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between the temperature gradient hrT � êc i and the heat

flux hq � êc i, both of which are computed directly from the

solutions hTi of the parallel heat transport equation shown
in Fig. 3. The flux as a function of c is obtained from

hq � êc i ¼ �ð1= ffiffiffiffiffiffiffi
2c

p Þ d
dt

Rc
0 hTidc 0, which follows from

Eq. (1), and the gradient hrT � êc i ¼
ffiffiffiffiffiffiffi
2c

p
@c hTi.

Figure 4 shows the parametric curves Cðc Þ ¼
½�hrT � êc iðc Þ; hq � êc iðc Þ� tracing the values of the

flux and the gradient as functions of c in the flux-gradient
plane. In both the diffusive � ¼ 2 and the free-streaming
� ¼ 1 cases, the flux-gradient parametric curves exhibit
two key features: (i) The flux is a multivalued function of
the gradient (i.e., the curves exhibit ‘‘loops’’), and (ii) the
shape of the curves depends on time. In the case of a
constant (in space and time) diffusivity �eff , the local
diffusion assumption requires the parametric curves to be
straight lines. The only way to make the local diffusion
assumption consistent with a multivalued flux-gradient re-
lation is to incorporate an ad hoc spatial dependence in�eff .
Similarly, the only way to explain the temporal vari-
ation of the flux-gradient curves is to incorporate an
ad hoc temporal dependence in �eff . Although, formally,
one could construct these spatiotemporal diffusivities
to fit the data, such dependencies are inconsistent with the
physics of the problem because the magnetic field is time-
independent, and the field-line chaos is uniform in c by
construction. This implies that the effective radial heat
transport due to parallel transport in fully chaotic magnetic
fields is incompatible with the quasilinear diffusion trans-
port model.
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FIG. 4 (color online). Flux-gradient parametric curves obtained from the numerical integration of the parallel heat transport equation
in a fully chaotic magnetic field. The left panel corresponds to the local transport (� ¼ 2) solutions shown in Fig. 3 for �kt ¼ 80
(dashed-crosses line) and �kt ¼ 200 (dashed-circles line). The right panel corresponds to the free-streaming transport (� ¼ 1)
solutions shown in Fig. 3 for �kt ¼ 4 (dashed-crosses line) and �kt ¼ 8 (dashed-circles line).
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