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It is demonstrated that in two-dimensional plasmas there is in general a vortex component of the

electron motion, which means that electron and ion fluxes do not satisfy the ambipolarity condition.
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The general balance equation for density of a single-
component plasma was formulated by Schottky in 1924 by
way of example of a longitudinally homogeneous positive
column of a glow discharge in a tube [1].

The fundamental balance equations are

@ne;i
@t

þr � �e;i ¼ S; (1)

where fluxes �e;i (subscripts e; i indicate electrons and

ions, respectively) are assumed to be of the drift-diffusion
form

� e;i ¼ �rðDe;ine;iÞ ��e;ine;ir’; (2)

where n is density, D is a diffusion coefficient, � is
mobility, ’ is an electric potential, and S is the volume
generation rate. Note that expressions (2) account for
thermodiffusion. The drift-diffusion treatment of transport
is valid when the mean free path of electrons is less than the
discharge size.

The difference between two equations (1) for ions and
electrons, given plasma quasineutrality ne ¼ ni ¼ n, pro-
duces the continuity equation for the current density

r � j ¼ r � eð�i � �eÞ ¼ 0: (3)

The substitution of both expressions (2) for fluxes in j ¼
eð�i � �eÞ gives the expression for the electric field [2]:

�r’ ¼ �rððDe �DiÞnÞ
ð�e þ�iÞn þ j

eð�e þ�iÞn ¼ Ed þ Ec:

(4)

The first term Ed in (4) is the ambipolar field determined
by the gradient of plasma density. It could be obtained from
a simpler than (3) ambipolarity condition

� e ¼ �i; (5)

as it is usually done in textbooks on plasma physics [3].
The second term Ec is due to electric current. Thus, in a
current-free plasmaEc vanishes. In this case the field�r’
is ambipolar. In a 1D case the only solution to (3) is a
constant j ensured by an external source. A multidimen-
sional case is more complicated, because (3) no longer
means that j is a constant.

In the special investigation of a 2D inductively coupled
plasma (ICP) discharge in argon [4,5], it was shown that in
case of conductive walls, vortex electron currents exist in
plasma, closing on conductive boundaries. For nonconduc-
tive walls, on which the fluxes of electrons and ions are
locally equal, it was concluded in [4,5] that condition (5) is
valid throughout the 2D discharge volume.
However, a more careful analysis shows that while in a

1D case equality (5) for fluxes in the whole volume follows
from the same equality on a nonconductive boundary, the
extrapolation of this fact to a 2D ICP discharge with
dielectric walls, allowed in [4,5], requires a proof.
Thus, in the analysis of fluid strata in [6] it was noted
that in 2D plasma with nonuniform profiles of n and Te

significant radial electronic currents may exist that are not
subject to (5).
In this work it is shown that it is already in a two-

dimensional case that the spatial nonuniformity of n and
Te profiles necessarily leads to the presence of a vortex
component in electron current, and hence the fluxes of
charged particles do not satisfy ambipolarity condition
(5). Furthermore, in this case an ambipolar field Ed is
not a potential field.
To prove such important propositions it is enough to

consider the simplest case of a single-component plasma
with constant mobilities �e, �i in a discharge volume
bounded by dielectric walls, because any complica-
tion (conducting walls, nonuniformity of mobility pro-
files, multicomponent plasma, presence of magnetic field,
etc.) will only aggravate the violation of ambipolarity
condition (5).
Further, several propositions of a more mathematical

nature are used with the following conventions: � is the
plasma domain (assumed to be a closed set), @� is its
boundary, and k is the outer normal vector to @�. We
assume that particle fluxes are described by drift-diffusion
equations (2), De;�e are functions of Te;Di, and �i are
constants. All quantities are assumed to be smoothly
varying.
First let us prove that if rn and rTe are parallel

throughout �, i.e., rTe �rn ¼ 0, and the normal com-
ponent of the current density vanishes at the boundary @�:
j � kj@� ¼ 0, then j ¼ 0 throughout �.
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Since rn and rTe are parallel, the values of Te on the
contours of n, which are always normal to its gradient,
are constant. Thus Te is a single-valued function of n: Te ¼
gðnÞ. In fact this statement follows from a general theorem
on functional dependence (see [7]). The current density j
can be written in the form

j ¼ �e½�rððDe �DiÞnÞþ ð�e þ�iÞnr’�
¼ �eð�e þ�iÞn

�
�De �Di

�e þ�i

r lnððDe �DiÞnÞþr’

�
:

(6)

Further, using the fact thatDe is a function of Te, and hence
a function of n, the expression for j can be written as

j ¼ �eð�e þ�iÞn
�
uðnÞ dvðnÞ

dn
rnþr’

�
; (7)

where u and v are functions of the single argument n. The
exact form of these equations is not important, but assum-
ing wðnÞ ¼ R

n
0 uð�Þv0ð�Þd�, we obtain

j ¼ �eð�e þ�iÞnrðwðnÞ þ ’Þ ¼ �prc ; (8)

where p ¼ eð�e þ�iÞn, c ¼ ðwðnÞ þ ’Þ. Equation (3)
and the boundary condition of j vanishing there then take
the form

r � ðprc Þ ¼ 0; k � ðprc Þj@� ¼ 0: (9)

Now in the theory of differential equations [8], if p > 0
anywhere in �, then a solution to the boundary value
problem (9) is a constant c ¼ c 0. In other words, for
sufficiently smooth p and c it follows from (8) that c ¼
c 0 ¼ const, and hence j ¼ 0.
Thus, the ambipolarity of fluxes (5) is fulfilled if rTe �

rn ¼ 0. Furthermore, in special cases, where De and �e

are constants, or ðDe �DiÞ=ð�e þ�iÞ is a constant,
j ¼ 0, as follows from (8).

Conversely, if rTe �rn � 0 at some point x0 of �,
and d½ðDe �DiÞ=ð�e þ�iÞ�=dTe � 0 throughout�, then
there exists a point at which j � 0.

If we suppose that j ¼ 0 everywhere, then

uðTeÞrTe þ vðTeÞrðlnnÞ ¼ r’; (10)

where

DT
e ¼ dDeðTeÞ

dTe

; u ¼ DT
e

�e þ�i

; v ¼ De �Di

�e þ�i

:

(11)

Taking the curl of both sides of (10) and remembering
that the curl of a gradient ¼ 0, (10) becomes

ðruÞ � rTe þ ðrvÞ � rðlnnÞ ¼ 0: (12)

Since both u and v depend only on Te, (12) can be
rewritten as

rTe �rn ¼ 0; (13)

and (13) must be satisfied everywhere in �, which contra-
dicts the original proposition thatrTe �rn � 0 at a point
x0. Hence there is a point at which j � 0.
In turn, if in � there are points where j � 0, then there

are also points where r� j � 0. Indeed, the normal com-
ponent of the current has to vanish on @�, as the current
cannot flow through the dielectric. Then from the assump-
tion that r� j ¼ 0 throughout�, it follows that j ¼ rc
for some potential c . Then from Eq. (3) �c ¼ 0 through-
out �, and, as stated above, j � k ¼ rc � k ¼ 0 at
the boundary @�. Then any constant A is a solution to
this boundary value problem. Since the solution of a
Neumann boundary problem for a Laplace equation is
unique up to constant [8], all possible solutions have the
form of c ¼ A. Hence j ¼ rA ¼ 0 throughout �. But
this contradicts the assumption made. Consequently, there
is a point in�wherer� j � 0. It means that j is a vortex
current.
Thus, our analysis demonstrates that even in an unmag-

netized 2D plasma with spatially nonuniform profiles of
density and electron temperature the current density is not
zero. It means that (5) is violated. Moreover, the current
has a vortex nature even in case of a potential electric
field �r’.
The Ec term in Eq. (4) is determined by electric current

j. Therefore, in the case of a vortex current, Ec also has a
vortex nature (because the directions of j and Ec are the
same and j has closed streamlines). Hence, to ensure
the potential character of the total electric field �r’, the
ambipolar component Ed of the field has to be vortex too.
Therefore, the ambipolar electric field in this case is not a
potential field.
It should be noted that in the case of constant mobilities

�e,�i, the sum of Eq. (1) for electrons and ions, multiplied
by �i=ð�e þ�iÞ and �e=ð�e þ�iÞ, respectively, gives
the equation of ambipolar diffusion

@n

@t
� �ðDanÞ ¼ S; (14)

where Da ¼ ðDe�i þDi�eÞ=ð�e þ�iÞ is the ambipolar
diffusion coefficient. In this case the equation of ambipolar
diffusion is valid in spite of the violation of ambipolarity
condition (5). The amazing fact that at constant mobilities
Eq. (14) does not depend on a current flowing through
plasma was mentioned in [2,6].
Likewise, while the fluxes of electrons and ions are not

equal, the ion flux in a fluid model is approximately equal
to the ambipolar flux. Indeed, within the drift-diffusion
approximation the electron flux (2) is much smaller than
each of its components given by drift and by diffusion. This
means that r’ � rðDenÞ=ð�enÞ, and substituting this
into (2) we obtain for the ion flux

� i � �Darn� �i

�e

DT
e nrTe; (15)

where DT
e is defined by (11) and the fact that �e � �i has

been taken into account.
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In the case of constant mobilities, and when the Einstein
relation for electronsDe ¼ Te�e holds,D

T
e ¼ �e and (15)

takes a simpler form

� i � �Darn��inrTe � ��irðnTeÞ: (16)

Since the gradient of the electron temperature in plasmas
is generally small in comparison with the density gradient
[6], the direction of the ion flux for the case of �e ¼ const
is almost perpendicular to the contour of plasma density.
This remains true in a more general case when �e is a
function of Te, as the second term in (16) is small in
comparison with the first one. This is confirmed by results
of numerical simulations.

The simulations were carried out for an ICP discharge in
argon, in a cylindrical chamber of length L ¼ 8 cm and
radius R ¼ 5:15 cm, with dielectric walls. Inductive coils
are placed at one end of the cylinder (on the left in the
figures that follow). The simulations employed a fluid
model. A self-consistent system of equations for electron
and ion densities and electron energy together with
Poisson’s equation were used.
A detailed description of the system of equations and the

boundary conditions has been given in [9]. For simplicity,
the volume processes took into account only direct ioniza-
tion for argon by convolving a Maxwellian distribution for
given Te with the electron impact cross section. �e was
calculated using the momentum transfer cross section, and
De was determined by the Einstein relation.
The simulations were carried out for conditions where

the gas pressure p was 200 mTorr and the absorbed in
plasma power was 1 W. Quasineutrality ne ¼ ni was found
to hold to a high degree of accuracy. Figure 1 shows that
the streamlines are closed and the electric current has a
vortex nature. Figure 2 shows the spatial distribution of
electron temperature Te and the directions of the gradients
of density and temperature by black and gray (red) stream-
lines, respectively. It can be seen that in general these
vectors are not parallel.
Additionally, simulations were performed for the same

conditions as the previous ones but with the constant
electron diffusion coefficient. The value chosen was the
one obtained by averaging over the volume from the first
simulation. In this case we could confirm that j ¼ 0; there-
fore, a streamline plot, such as the one given in Fig. 1,
cannot be given here; in this case �e ¼ �i ¼ �Darn. The
profiles of n, Te, and ’ in both simulations are almost the
same.
Thus, to show the differences, the profiles of the electric

current density and its electronic and ionic components are
represented in Fig. 3. It can be seen that the electronic
component significantly exceeds the ionic one. Our results
show that the ratio of total current to the ambipolar
one increases with pressure, when Te becomes more

FIG. 1 (color online). A composite plot of the total electric
current density. The colors show the absolute value of the flux.
The current directions are shown by streamlines with arrows.
Streamlines are closed, indicating that the current is a vortex one.

FIG. 2 (color online). A composite plot. The color indicates
electron temperature values. Black and gray (red) streamlines
show the directions of rn and rTe, respectively.

FIG. 3 (color online). Profiles of the electron flux [light gray
(red)] and the ion flux [dark gray (blue)] axially (left) and
radially at L=2 (right), showing their difference which is pro-
portional to the current density. The axial components of fluxes
are shown on the first plot and the radial components on the
second one.
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nonuniform. Figure 4 gives the contours of plasma density
and the directions of ion flux, indicated by streamlines with
arrows. It shows that the ion flux is almost normal to
plasma density contours, in agreement with (16). Thus,
even for an unmagnetized single ion species plasma
bounded by dielectric walls in 2D cylindrical geometry,
(5) is violated and a vortex electric current occurs. Since
other complications, such as conducting walls and the
presence of a magnetic field, will only further constrain
validity, it is possible to state that the classical concept of
ambipolar diffusion is not generally valid in two dimen-
sions. That is, it is not a paradigm for the transport of
charged particles in plasmas, and we conclude that the case
of a longitudinally uniform positive column of a dc dis-
charge is a special case [10].

We also made simulations for a more complicated case,
which is also more interesting for practical applications
(and especially for plasma processing). Namely, we made
the calculation of an ICP discharge in oxygen (with pres-
sure p ¼ 20 mTorr, the power absorbed in plasma ¼
25 W) in a discharge chamber with metal walls. The dis-
charge volume has more complex geometry and consists of
two chambers with the small chamber dimensions L ¼
8 cm, R ¼ 5:15 cm and L1 ¼ 16 cm, R1 ¼ 10:3 cm for
the large ballast volume (see Fig. 5). rf coils are at the left
side of the chamber. The system of equations is similar to
that used for argon, but it accounts for two kinds of ions
(positive Oþ

2 and negative O�) and a more complex plas-
machemistry model that includes processes of attachment,
detachment, ionization, dissociation, and excitation of a
singlet level of an oxygen molecule [11]. Figure 5 shows
streamlines of total electric current density for this dis-
charge. It can be seen that in this case there is also a vortex

current with closed streamlines, but some streamlines start
and finish at walls.
In conclusion we should note that the presence of a

vortex component of current necessarily leads to additional
Joule heating of the electron gas, which manifests itself in
the formation of fluid strata [6]. Additionally, the inequal-
ity of electron and ion fluxes can lead to such a nontrivial
phenomenon as arising of friction forces which may affect
a neutral gas [12]. In particular, these forces may cause
rotation of the gas and thus possibly cause magnetome-
chanical effects [13].
The authors thank L.D. Tsendin for stimulating

discussions.
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FIG. 5 (color online). A composite plot of the total electric
current density for a two-chamber ICP discharge in oxygen with
metal walls. The colors show the absolute value of the flux. The
direction of the current is shown by streamlines with arrows.

FIG. 4 (color online). A composite plot. The plasma density n
is shown in color. Thick lines with arrows are the ion stream-
lines.
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