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We investigate the interaction between two cracks propagating quasistatically in a thin sheet. Two

different experimental geometries allow us to tear sheets by imposing an out-of-plane shear loading.

A single tear propagates in a straight line independently of its position in the sheet. In contrast, we find that

two tears converge along self-similar paths and annihilate each other. These finite-distance singularities

display geometry-dependent similarity exponents, which we retrieve using scaling arguments based on a

balance between the stretching and the bending of the sheet close to the tips of the cracks.
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Thin sheets are widespread in nature and techno-
logy. Examples include insect wings, leaves or tectonic
plates, and graphene, conducting layers, or metallic roofs.
Strikingly, these objects feature two types of energy focus-
ing, at a sharp fold as in crumpled paper [1] or at the tip of a
crack as in a torn sheet of paper. More generally, under-
standing and predicting the propagation of a crack in a
brittle material yield a central challenge in fracture me-
chanics [2,3]. A body of research has been performed on
the path of a crack submitted to in-plane tensile (mode I) or
shear (mode II) loading; see [4–6] for recent references. An
emerging consensus is that a crack generally propagates
along a path such that mode II vanishes and the material
opens in a tensile mode (principle of local symmetry). Few
studies considered out-of-plane shear (mod III) loading;
see [7,8]. Even fewer investigations addressed mode III
crack propagation in thin sheets, focusing on ductile ma-
terials [9–11], on sheets adhering to a substrate [12,13], or
on cutting with blunt indentors [10,14,15]. This class of
experiments points out the coupling between the bending
of the sheet and in-plane stretching leading to the opening
of cracks.

In a preliminary report [16], we studied the quasistatic
propagation of one or two cracks in a brittle thin sheet,
using the so-called trousers test configuration [9]. The
results that we obtained indicate that, although a large-scale
mode III is imposed, the material locally breaks in the
tensile mode I. As a consequence, the interfaces opened
by the crack are not perpendicular to the sheet surface and
are inclined by 45 deg instead. Moreover, the tear propa-
gates in a straight line even if initiated away from the
sample midline, in contrast with in-plane fracture where a
crack converges to the midline of the sample. Here we also
consider a peel-like configuration andwe focus on two tears
propagating quasistatically. We find that they converge
along self-similar paths, with characteristic exponents cor-
responding to each type of loading. The topological change
that occurs when they annihilate each other is reminiscent
of finite-time singularities in the breakup of liquid droplets

and jets [17,18], which suggests the terminology of finite-
distance singularity. Our power-law crack paths differ from
the exponential shapes predicted in [19], while the expo-
nents that we measure also differ from the value of 1
observed in the peeling of a sheet adhering on substrate as
investigated by Hamm et al. [12] who found the crack paths
to be determined by a balance between fracture energies
and bending.We account for our observations using scaling
arguments inspired by energy localization along ridges in
crumpled sheets [20]. Therefore our experiments appear as
a nontrivial combination of the two types of energy focus-
ing known in thin sheets, i.e., fracture and crumpling.
In all experiments, we used thin films of bidirectional

polypropylene of thickness h ¼ 30, 50, and 90 �m.
Young’s modulus and fracture toughness were measured

as 2:2� 0:4 GPa and 2:6� 0:3 MPa �m1=2, respectively.
The films were found to have isotropic mechanical prop-
erties within these uncertainties. All experiments were
performed quasistatically, with crack velocities in the
range 0:05–1:5 mm � s�1. At ambient temperature and in
this velocity range, the fracture process is brittle for poly-
propylene. The crack paths were digitized using a scanner,
with a resolution of about 10 �m.
The first setup is inspired by the trousers test used to

characterize ductile sheets [9] and mimics the common
way one tears a sheet of paper in three pieces. It was
described in [16]; we recall here the important features
of the setup. In a very long sheet of widthW, two cracks are
initiated by two cuts positioned symmetrically with respect
to the central axis of the sample, so that three strips are
created at one end of the sheet (Fig. 1). The sheet is pulled
from the three strips using cylinders for the entrainment.
The main control parameters are the width of the sample
W, the initial distance between the two cracks w, and the
distance d between the freely rotating cylinders that deflect
the strips. We found that the results presented here are
independent of d. When the tears are propagated, the
distance between their tips Y decreases from w to 0,
as they converge and eventually annihilate each other.
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The topology has changed: the sheet is split in two parts,
and the central strip has detached into a tonguelike shape,
as shown in Fig. 1(c). When the ratio between the initial
width of the central strip and the width of the sample is
smaller enough (w & 0:1W), experiments are reproducible
and the results are found to be independent of W. If the
central strip is larger (w * 0:1W), experiments are less
reproducible and the shape of the tear is not always sym-
metric. This might be ascribed to the sensitivity of
propagation to imperfections in the parallelism of the
cylinders’ axes.

We analyzed the crack paths by digitizing the tonguelike
central strip. The width y of the strip is defined in Fig. 1(c)
and shown in Fig. 2(a) as a function of the distance x to the
point where the two tears converged. An important obser-
vation is that all realizations are superimposed (for various
values of w, W, and d), indicating that the geometry of the
setup is unimportant for path selection. We found that, in
the range 5 � x � 300 mm, the curves yðxÞ are well de-
scribed by a power law of exponent 0:64� 0:06 and a
prefactor (0:77� 0:2 and 1:2� 0:2) that is larger for the
largest value of thickness. Below x ¼ 5 mm, yðxÞ seems
close to being linear. We then sought the origin of this
transition and made the following observations. After tear-
ing, far from the tip, the strip recovers its flatness, indicat-
ing a brittle fracture process, while it is permanently
curved in a small region close to the tip, which is a
signature of plastic deformations. Postmortem analysis of

the fracture surface shows that it is generally inclined by an
angle � ¼ 45� with respect to the surface of the film, in
agreement with our previous observations on a single crack
[16]. However, a transition occurs for x� 5 mm: this angle
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FIG. 2 (color online). Crack paths in the trousers configura-
tion. (a) Shape of the central strip: width y as a function of
longitudinal coordinate x; see Fig. 1(c) for definitions. The
widths for a thickness of 90 �m were multiplied by 100 for
clarity. The colors of the symbols correspond to different real-
izations. Power laws of exponents 2=3 and 1 are shown for
comparison. (b) Angle � of inclination of the fracture surface
with respect to the sheet surface (defined in inset) as a function
of the longitudinal distance x, suggesting a transition around
x ¼ 5 mm from 45� to lower values. The initial distance be-
tween the two tears was w ¼ 20 mm and the thickness had the
value h ¼ 50 �m. (c) The curves in (a) were made nondimen-
sional using the sheet thickness h as a unit. Black and gray (red)
symbols correspond to h ¼ 50 and 90 �m, respectively.

FIG. 1. The trousers configuration: side (a) and top (b) sche-
matics of the experiment. The sheet is pulled from the three
strips as shown by the arrows. The strips are deflected by freely
rotating cylinders and then rolled over two cylinders entrained
by a continuous motor. (c) After the tears have converged, the
central strip has a tonguelike shape, described by a curve yðxÞ.
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decreases down to the value � ¼ 34� at the merging point.
This transition seems to be related to the appearance of
plastic deformations. If � decreased to zero, the fracture
surfaces would be parallel to the sheet surfaces, and the
configuration would resemble the peeling of an adhesive
strip, in which two notches lead to triangular strips [12].
This remark might account for a linear behavior of yðxÞ for
small x. Finally, we nondimensionalized the profile yðxÞ by
using the thickness h as a unit [Fig. 2(c)], which yields a
fair collapse of the data. However, we were unable to
obtain reproducible results with the smallest thickness,
h ¼ 30 �m, for which the crack paths are very sensitive
to the forcing. As a consequence, the range in thickness is
too narrow to rule out other small-scale characteristic
lengths.

In a second step, we considered a less symmetric, peel-
like experimental configuration. This configuration is simi-
lar to that of [12], but in our case there is no adhesion
between the sheet and the substrate. We expected that the
prefactors of the power-law paths would change in this
configuration and we aimed at understanding the behavior
of these prefactors. A long sheet of width W is clamped
along its lateral boundaries to a thick wooden plate, using
narrow adhesive tapes [Fig. 3(a)]. Two parallel notches are
initially made at a distance w one from another at one end
of the sheet. The central strip is pulled horizontally, so that
the two tears propagate quasistatically. In contrast with the
first configuration, the distance between the pulling point
and the crack tips increases, but this macroscopic length
appears to be unimportant in the following results. As the
tears advance, the distance between the two tips decreases
from w to 0, when they annihilate each other and the ce-
ntral strip detaches. The resulting shape yðxÞ [Fig. 3(b)] is
qualitatively similar to those of the first setup. The shapes
of various detached strips are shown in Fig. 4(a). Again, all

realizations are superimposed for a given value of thick-
ness, indicating that the large-scale geometry of the setup
is unimportant for path selection. Over 2 orders of magni-
tude, the curves yðxÞ are well described by a power law
of exponent 0:77� 0:05 and prefactors (0:82� 0:06,
1:2� 0:2, and 1:53� 0:2) that increase with thickness.
We were surprised to find different exponents, which mo-
tivated the scaling analysis presented below. As in the first
setup, the tip of the central strip undergoes plastic flow, but
over a smaller length (� 1 mm). However, we have not
found any signature on the crack paths. Finally, we non-
dimensionalized the profile yðxÞ using the thickness h as a
unit [Fig. 4(b)], which provides a satisfying collapse of
the data.
Overall, the propagation of the two tears leads to a

topological change such that the cracks annihilate each
other and the central strip detaches. The crack paths
seem to follow well-defined power laws. In order to explain
this behavior, we consider the ridge joining the two tips,
which is one form of energy localization in thin sheets [1]

FIG. 3. The peel-like configuration. (a) Schematic of the ex-
periment. Two notches are initiated in a rectangular long sheet
clamped along its lateral boundaries. The central strip is pulled
horizontally at constant velocity until it detaches when the two
tears converge. (b) Tonguelike shape of the detached strip,
defined by yðxÞ.

10
−1

10
0

10
1

10
2

10
310

−2

10
−1

10
0

10
1

10
2

10
3

10
4

x (mm)

y 
(m

m
)

3/4

50 µm

90 µm

30 µm

10
−1

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

10
4

x/h

y/
h

3/4

FIG. 4 (color online). Crack paths in the peel-like configura-
tion. (a) Shape of the central strip: width y as a function of
longitudinal coordinate x; see Fig. 3(b) for definitions. The
widths for the values of the thickness 30 and 90 �m were
divided and multiplied by 10, respectively, for clarity. The colors
of the symbols correspond to different realizations. A power law
of exponent 3=4 is shown for comparison. (b) The curves in (a)
were made nondimensional using the sheet thickness h as a unit.
Light gray (green), black, and dark gray (red) symbols corre-
spond to h ¼ 30, 50, and 90 �m, respectively.
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as the sheet is highly bent. Guided by the principle of
maximal release of energy for the selection of a crack
path, we postulate that the two cracks follow the stress
field induced by the presence of this ridge and we inves-
tigate how this stress field decays away from the ridge. This
ridge of length Y imposes a normal displacement a that is
felt over a distance X in the region ahead of the cracks [see
Figs. 1(a), 1(b), and 3(a)]. Following [20], we estimate the
length X by balancing the stretching energy Es and the
bending energy Eb in a region of area S� XY. Assuming
Y � X, the strain s is distributed over the larger dimension
of this region so that it can be estimated as s� ða=XÞ2,
yielding a stretching energy Es � Ehs2S. The main curva-
ture c is along the shortest direction, so that c� a=Y2,
yielding Eb � Eh3c2S. As a consequence, Es � Eb corre-
sponds to

Y � Xðh=aÞ1=2; (1)

which is consistent with the assumption that Y � X as
long as a � h.

In the case of the trousers configuration, the normal
displacement a corresponds to a slope � felt over a distance
X=2, so that a� X�. In experiments, we observed this
slope �� 0:1 to be roughly constant (within a high uncer-
tainty due to the 3D configuration of the sheet), but we do
not have a theoretical argument accounting for this value.
Replacing in Eq. (1), we obtain

Y � ðh=�Þ1=3X2=3: (2)

Because of the weak dependence on �, we expect prefactor

of order 1 for Y=h� ðX=hÞ1=3. Following the postulate that
the cracks follow the shape of the region where the ridge is
felt, this scaling should predict the paths. Indeed, it yields a
good description of experimental results in Fig. 2(c), ex-
cept for the linear behavior for small x.

In the peel-like configuration, the normal displacement
is given by the width of the ridge boundary layer [20],

a� h1=3X2=3. A substitution in Eq. (1) leads to

Y � h1=4X3=4: (3)

This is also in good agreement with the experimental crack
paths shown in Fig. 4(b).

Thus, we are able to account for the power-law behavior
in experiments by estimating the decay length of the stress
field penetration in the sheet. This behavior is independent
of macroscopic parameters, but the exponents depend on
the symmetries of the experimental configuration. More
specifically, we find two values for the exponents accord-
ing to whether the sheet is flat or curved ahead of the
cracks. The two values (2=3 and 3=4) are determined by
a balance between stretching and bending, while in the
peeling of sheets adhering on a substrate [12], the value of
the exponent (1) is determined by a balance between
fracture energies and bending. The variety of exponents

according to geometry and force balance is reminiscent of
the finite-time singularities occurring in the breakup of
liquid droplets and jets [17,18]. This similarity, such that
the coordinate along the axis of the sheet replaces time,
prompted us to use finite-distance singularities to describe
our findings. Our results differ from the exponential shapes
predicted in [19], possibly because our sheets are an order
of magnitude thinner than in their simulations. Indeed, in
the case of the propagation of a single crack, the numerical
results of Cohen and Procaccia [19] get closer to our
experiments when thickness is decreased. Future theoreti-
cal work should address this discrepancy, as well as other
features that we have not accounted for, such as the selec-
tion of the slope � or the transition to a three-dimensional
fracture. Although the coupling between bending and
stretching seems to imprint the stress field and guide the
tears, the principles underlying propagation of cracks in
out-of-plane shear loading are still to be established.
We are grateful to Laurent Quartier for his help in

building the experimental apparatus, and to Eugenio
Hamm, Benoit Roman, Yossi Cohen, and Itamar
Procaccia for inspiration and discussions.
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