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We show that short pulses propagating in zero-gap periodic systems can be reversed with 100%

efficiency by using weak nonadiabatic tuning of the wave velocity at time scales that can be much slower

than the period. Unlike previous schemes, we demonstrate reversal of broadband (few cycle) pulses with

simple structures. Our scheme may thus open the way to time reversal in a variety of systems for which it

was not accessible before.
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Wave propagation in periodic systems has been the
focus of countless studies in several branches of physics.
The most prominent of these systems are crystalline solids
and their artificial analogues, known as photonic crystals
(PhCs) [1], phononic crystals [2], etc. The study of such
systems is almost exclusively associated with the forbidden
gaps, which are energy or frequency regimes where waves
cannot propagate. These gaps are crucial to understanding
the electronic and optical properties of solid-state systems;
their artificial analogues have a variety of possible appli-
cations, ranging from low-threshold lasers, light or sound
guiding, filtering and switching [1] to medical ultrasound,
and nondestructive testing [2].

Although the occurrence of band gaps is generic to
periodic systems, in some special cases, the gaps can
have a zerowidth. Similarly, some materials and structures
support two bands that cross symmetrically, without form-
ing a gap. One of the most notable of those is graphene [3],
or its photonic crystal analogue [1]. Others are chiral
metamaterials [4], transmission-line systems [5], biaxial
crystals [6], and spin systems [7]. Previous studies of such
systems have already shown some unusual properties
[3,4,6,8]. However, these systems have been relatively
unexplored, especially for pulse manipulations. For this
purpose, the zero-gap system differs from a finite-gap
system in the sense that while a pulse incident on a
finite-gap system will mostly be reflected, a pulse incident
on a zero-gap system will be almost perfectly admitted.
Moreover, the proximity of the crossing bands allows for
efficient transfer of energy between the bands using weak
and slow modulations of the wave velocity. This enables
light slowing down, stopping or reversing, etc.

In this Letter, we focus on time reversal. A time-reversed
pulse evolves as if time runs backward, thus eliminating
any distortions or scattering that occurred at earlier times.
It has applications in diverse fields such as medical ultra-
sound [9], optical communications and adaptive optics
[10–12], superlensing [13], ultrafast plasmonics [14], bio-
logical imaging [15], THz imaging [16], and quantum
information and computing [17]. In particular, we study
time reversal of electromagnetic pulses which, to date, has

been demonstrated for pulses of a relatively narrow spec-
trum or requires complicated schemes [10,18–23]. Some of
these techniques [21,22] are based on dynamically tuned
PhCs. This novel subject of PhC research is experiencing a
fast growth with applications such as frequency shifting,
switching and many others studied theoretically and ex-
perimentally [24,25]. In this Letter, we show that dynami-
cally tuned zero-gap PhCs enable an effective and
broadband reversal in conceptually simple systems which
are well within contemporary fabrication capabilities.
Most importantly, unlike previous schemes, the zero-gap
systems allow for reversal of pulses of unprecedented
broad spectrum, thus, opening the way to reversal of few
cycle pulses. In addition, as our scheme does not rely on
any concept which is unique to optics, it can be applied for
reversal of other wave systems for which time reversal was
not accessible before.
We consider the simplest example of a perfectly sym-

metric zero-gap system, namely, a 1D layered PhC satisfy-
ing the quarter-wave stack (QWS) condition, i.e., when the
indices and thicknesses of the two layers satisfy [1,26]

n1d1 ¼ n2d2: (1)

Such a system has a zero-width gap at, e.g.,

�c ¼ 2n1d1 ¼ 2n2d2: (2)

The band structure of such PhCs can be computed analyti-
cally [26], see, e.g., Fig. 1(a). At the crossing point (at zero
Bloch momentum, K ¼ 0), light can travel either in the
forward or backward direction (i.e., on the positive or
negative group-velocity band). An index modulation
causes a transfer of energy between these bands.
Intuitively, accurate reversal can be achieved only if two
conditions are fulfilled. First, the modulation should be
periodic in order to avoid any wave vector mixing, result-
ing in a vertical frequency conversion, see Fig. 1(b).
Second, the modulation should be much faster than the
pulse duration or equivalently, the spectral content of the
modulation should be much wider than that of the pulse;
only such a nonadiabatic modulation ensures a frequency-
independent frequency conversion, hence, an accurate

PRL 106, 193902 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
13 MAY 2011

0031-9007=11=106(19)=193902(4) 193902-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.193902


reversal. Nevertheless, the modulation can still be much
longer than the period of the pulse oscillations.

In what follows, we analyze the QWS system and con-
firm the intuitive arguments given above. However, we
emphasize that the ideas and techniques we use here can
be employed also in other zero-gap systems.

Consider an electromagnetic pulsed plane wave nor-
mally incident on a QWS PhC (see Fig. 2) which is time
modulated in the following form

nðx; tÞ ¼ nQWSðxÞ þ �pðxÞmðtÞ; max½mðtÞ� ¼ 1:

Here, the static QWS nQWSðxÞ and spatial pattern of the

modulation pðxÞ have period d, and � is a constant repre-
senting the magnitude of the modulation. For a linear
polarization, the Maxwell equations are given by

Exðx; tÞ ¼ ��0Htðx; tÞ; Hx ¼ ��0½n2ðx; tÞEðx; tÞ�t;
(3)

or, if the H field is eliminated, by

Exxðx; tÞ ¼ ½v�2ðx; tÞEðx; tÞ�tt; (4)

which is a one-dimensional scalar wave equation with a
space and time-dependent velocity v ¼ c=nðx; tÞ.

We proceed with an analysis similar to that first per-
formed in [27]. We define

Eðx; tÞ ¼ n�ð1=2Þðx; tÞ½Fðx; tÞ þ Bðx; tÞ�;
Z0Hðx; tÞ ¼ n1=2ðx; tÞ½Fðx; tÞ � Bðx; tÞ�;

where F and B are scalar functions representing the for-
ward and backward fluxes in the PhC. Substituting in
Eq. (3) gives

Fxðx; tÞ þ nðx; tÞ
c

Ft þ nt
c
F ¼ � 1

2

�
nt
c
� nx

n

�
B;

Bxðx; tÞ � nðx; tÞ
c

Bt � nt
c
B ¼ 1

2

�
nt
c
þ nx

n

�
F:

We rewrite the system in matrix form as

nWt ¼ MW; (5)

where

W ¼ F
B

� �
; M ¼

�c@x � nt � c
2

�
nt
c � nx

n

�

� c
2

�
nt
c þ nx

n

�
c@x � nt

0
BB@

1
CCA:

Near a gap, the solution of Eq. (5) consists predominantly
of two spectral components on each of the two bands. We
write each component as the product of a carrier unidirec-
tional Floquet-Bloch (FB) mode�f=b and a slowly varying

envelope f=b, respectively, i.e.,

W ¼ ½fðx1; t1Þ�fðx0Þ þ bðx1; t1Þ�bðx0Þ�e�i!ct0 (6)

where !c ¼ 2�c=�c and �f=b are the eigenmodes of

Eq. (5). We also formally distinguish between fast varia-
tions of the carrier waves (through x0 and t0) and slower
variations of the envelopes (through x1 and t1).
Assuming the central frequency of the input pulse is

tuned exactly to the crossing point, substituting Eq. (6) in
Eq. (5), multiplying by ��

f and ��
b, respectively, and

integrating over x0 allows us to remove the dependence
on the fast scales. Then, for a piecewise-uniform modula-
tion, we obtain the following equations for the time evo-
lution of the forward or backward envelopes

½1þ �mðdÞmðtÞ�ftðx; tÞ þ vgfx þ �mðdÞ½mt � i!cmðtÞ�f
¼ �mðodÞ½i!cmðtÞb�mtb�mðtÞbt�; (7)

and

½1þ �mðdÞmðtÞ�btðx; tÞ � vgbx þ�mðdÞ½mt � i!cmðtÞ�b
¼ �mðodÞ½i!cmðtÞf�mtf�mðtÞft�; (8)

where vg ¼ c=
ffiffiffiffiffiffiffiffiffiffi
n1n2

p
is the group velocity and mðdÞ �

mff ¼ mbb, mðodÞ � mfb ¼ mfb� with

mij ¼
Z d

0
�y

i ðxÞpðxÞ�jðxÞdx:

For simplicity of notation, we have dropped the subscript
of the slow scale coordinates.
In Eqs. (7) and (8), the terms proportional to mðtÞ on the

left-hand sides describe the correction to the wave velocity,
or equivalently, the correction to the phase accumulation,
induced by the modulation. The terms proportional to
mtðtÞ represent the change of the electromagnetic energy
induced by the modulation. The terms on the right-hand
sides of Eqs. (7) and (8) are responsible for reversal cou-
pling, i.e., to the vertical transitions !þ�!!!��!,

FIG. 2 (color online). Geometry of the pulse propagation
through the QWS PhC.
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FIG. 1 (color online). (a) Reduced Brillouin zone plot of the
band structure of a QWS PhC. The bands support pulse propa-
gation in opposite directions (indicated by the red arrows).
(b) Schematics of the frequency conversion process.
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see Fig. 1(b). One can interpret the magnitude of the

associated coefficients mðodÞ as the measure of the phase
mismatch between the modes immediately above and be-
low the crossing frequency. The coupling tends to zero as
the index contrast approaches zero, as expected. In all other
cases, the dependence of the coupling coefficient on the
indices is nontrivial.

Equations (7) and (8) can be solved analytically if we
neglect all the coupling terms in Eq. (7). This is justified as
long as the backward component, which is absent prior to
the modulation, is small compared with the forward com-
ponent. Under this assumption of a weak coupling, the
solution of Eq. (7) can be shown to be

fðxðfÞ; tÞ ¼ e�ðtÞf0ðxðfÞÞ;

�ðtÞ ¼ �mðdÞ Z i!cmðt0Þ �mtðt0Þ
1þ �mðdÞmðt0Þ ;

where xðfÞ ¼ x� vg

R
dt0

1þ�mðdÞmðt0Þ represents a frame mov-

ing with the forward pulse and f0 is the envelope of the
pulse traveling in the forward direction before the onset of
the modulation. In a similar manner, it can be shown that
the backward wave (8) is given by

bðxðbÞ; tÞ ¼ �mðodÞe�ðtÞ �bðxðbÞ; tÞ; (9)

where

�bðxðbÞ; tÞ ¼
Z

hðt0Þf0
�
xðbÞ �

Z 2vgdt
00

1þ �mðdÞmðt00Þ
�
dt0;

and

hðtÞ ¼ �i!cmðtÞ þmtðtÞ
½1þ �mðdÞmðtÞ�2 ;

where xðbÞ ¼ xþ vg

R
dt0

1þ�mðdÞmðt0Þ is a frame moving with

the backward pulse; this shows that the wave front has
indeed been reversed. At times long after the modulation
has ended, b is effectively given by a convolution of the
forward wave f0 with hðtÞ, which thus plays the role of the
impulse response of the system. Since the durations of f0
and hðtÞ are Tmod and Tp, respectively, Eq. (9) shows that

accurate reversal can be achieved only in the nonadiabatic
limit

Tmod � Tp; (10)

in which case the impulse function is essentially a delta
function. In order to see that more clearly, consider a
Gaussian modulation and Gaussian pulse,

mðtÞ ¼ e�t2=T2
mod ; f0ðx�vgtÞ ¼ e�ðx�vgtÞ2=v2

gT
2
p : (11)

Then, for a small modulation (� � 1), we get that xðf;bÞ ¼
x� vgt, and the backward wave amplitude becomes

b ffi �i
ffiffiffiffi
�

p
!cTeff�m

ðodÞe�ðtÞf0
�
xþ vgt

Teff

�
; (12)

with Teff ¼ TmodTp=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4T2

mod þ T2
p

q
. Thus, the reversal is

accurate if condition (10) is satisfied; otherwise, the re-
versed pulse is broader than the input pulse.
Equation (9) can also be solved asymptotically without

any simplifying assumptions. However, whenever the
backward wave becomes comparable in magnitude to
the forward wave, the weak coupling solutions (9) or
(12) are not valid anymore. In such cases, Eqs. (7) and
(8) should be solved without approximation.
We now turn to discuss some practical aspects of a

reversal mirror (RM) design for electromagnetic pulses.
First, the RM should be long enough to contain the pulse
during the modulation. Simple estimates show that a few
cm long RM can contain and reverse pulses not longer than
a few tens of picoseconds. Second, the thicknesses of the
layers determine the carrier (crossing) frequency according
to Eq. (2). Third, with regards to modulation techniques,
picosecond and longer modulation times can be achieved
by exploiting the electro-optical effect or using carrier
injection in semiconductors. In the latter case, index mod-
ulations of the order of 1% at about 100 GHz [25] or even
at 1 ps scale [28] were achieved in silicon devices. Shorter
modulations must rely on an intense pulse in a pump-probe
configuration, see e.g., [19]. In these cases, however, the
reversal efficiency will be smaller due to the shorter modu-
lation time, see Eq. (12).
Finally, we demonstrate the performance of our RM

through numerical simulations. In Fig. 3(a), we plot the
wave amplitude at the input side of the PhC as a function of
time. The reversed pulse has a somewhat lower amplitude,
but the leading and trailing edges have clearly exchanged
roles. We also show that the solutions of the wave Eq. (4)
and the envelope Eqs. (7) and (8) are in excellent agree-
ment. Figure 3(b) shows a spatiotemporal contour map of
the pulse propagation. It shows that the modulation, occur-
ring once the pulse is in the middle of the RM, causes a fast
and complicated dynamics after which the pulse splits into
a reversed and a (somewhat delayed) forward component.
A comparison of the reversal efficiencies as a function of

the modulation strength, which also includes the analytical
approximation (12), is shown in Fig. 4. We employ realistic
parameters corresponding to a silicon-air QWS with
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FIG. 3 (color online). (a) Amplitude of an asymmetric pulse
[Eq. (4); red (medium gray) line] and the associated backward
wave envelope [Eq. (8); blue (dark gray) line] at the input side of
the QWS as a function of time. (b) A spatiotemporal contour
map of forward and backward envelopes in (a).
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�c ¼ 1550 nm; such a PhC can be fabricated on-chip with
current technology [25]. First, we perform simulations of
�20-cycle pulses. Figure 4(a) verifies that all three solu-
tions are in good agreement, thus, validating the analysis.
Figure 4(b) shows simulations for longer pulses for which
memory and running time required for the solution of
Eq. (4) are very long. Thus, we only show the solutions
of the envelope Eqs. (7) and (8) vs the analytical solution.
As in Fig. 4(a), there is very good agreement between the
numerical and analytical solutions up to high efficiencies
(� 50%). At even higher efficiencies, the analysis over-
estimates the reversal efficiency given by the solution of
the envelope equations. This is because at such high effi-
ciencies, the forward wave amplitude is significantly de-
creased, so the forward-to-backward wave coupling
decreases as well. Nevertheless, the solutions of the enve-
lope equations show that a 100% reversal efficiency can be
achieved with index modulations only slightly stronger
than those predicted analytically. Thus, our RM has com-
parable performance to the previously suggested time-
reversal schemes in index-modulated coupled-resonator
arrays of optical waveguides [21,22] and wave-mixing-
based schemes [19]. However, in contrast to these schemes,
the QWS can admit and reverse pulses of very broad
spectrum. In addition, our system does not suffer from a
deterioration of performance due to nonadiabatic
modulations.

In summary, we have shown how to time-reverse wave
packets by exploiting the unusual band structure of zero-
gap PhCs using index modulations that can be very weak
and much slower than the wave period. The suggested
design was shown to allow for a 100% reversal efficiency,
and can be applied to pulses of unprecedented broad spec-
trum. Our design can be fabricated with contemporary
technology, e.g., on a silicon chip. Our RM does not
require any prior knowledge on the pulse properties and
can be implemented in almost any spectral range and pulse
duration. Higher-dimensional realizations of zero-gap
PhCs, e.g., having a hexagonal (graphenelike) symmetry,

may open the way to additional reversal functionalities and
may even be used as a building block in more sophisticated
time-reversal schemes or other wave manipulation
schemes like light stopping, slowing down, etc. Finally,
since our scheme does not rely on any concept which is
unique to optics, it can be employed in other zero-gap
systems for which time reversal may not have been acces-
sible so far, such as quantum systems [17], spintronics [7],
and microwave transmission lines [5].
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FIG. 4 (color online). (a) Reversal of a Tp ¼ 100 fs, unit-
amplitude Gaussian input pulse under a Gaussian modulation
(11) as a function of the index change � for n1 ¼ 3:45, n2 ¼ 1,
�c ¼ 1550 nm, and Tmod ¼ 10 fs. Shown are numerical solu-
tions of the wave equation [Eq. (4); blue (dark gray) dots] vs the
solution of the envelope equations [Eq. (8); black circles] and the
analytical solution [Eq. (12); red (medium gray) solid line].
(b) Same as (a) for Tmod ¼ 1 ps and Tp ¼ 10 ps.
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