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The muonic hydrogen experiment measuring the 2P� 2S transition energy [R. Pohl et al., Nature

(London) 466, 213 (2010)] is significantly discrepant with theoretical predictions based on quantum

electrodynamics. A possible approach to resolve this conundrum is to compare experimental values with

theoretical predictions in another system, muonic deuterium �D. The only correction which might be

questioned in �D is that due to the deuteron polarizability. We investigate this effect in detail and observe

cancellation with the elastic contribution. The total value obtained for the deuteron structure correction in

the 2P� 2S transition is 1.680(16) meV.
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The determination of electromagnetic properties of nu-
clei from precise atomic spectroscopy has become possible
due to significant progress in atomic structure theory,
which in turn is based on quantum electrodynamics
(QED). The proton charge radius as obtained from the
Lamb shift in hydrogen [1] is more accurate than any
determination using electron scattering, including the
most recent ones [2,3], and in agreement with them. The
determination of the deuteron charge radius from the mea-
surement of the hydrogen-deuterium isotope shift in the
2S� 1S transition frequency [4,5], apart from being the
most accurate, has stimulated reanalysis of the electron
scattering data. At present the atomic isotope shift deter-
minations of charge radii for helium, lithium, and beryl-
lium atoms are not only the most accurate ones, but also the
only ones available for short lived isotopes [6].

It was a great surprise that the proton charge radius rp
determined from the muonic hydrogen Lamb shift [7] gave
a result in conflict with the value determined from elec-
tronic hydrogen. The 5� discrepancy in rp is the first

indication that our knowledge of interactions in these
simple atomic systems is not complete. While we will
not pursue the possible explanations of the proton charge
radius discrepancy, we point attention to the critical test
which can be performed with muonic deuterium. The
electronic H-D isotope shift gives a very accurate differ-
ence for the deuteron and proton charge radii. If the results
for the difference between �D and �H are consistent with
the electronic H-D, this would mean that there is an extra
muon-proton interaction, which cancels out in the �H-�D
difference. In order to draw these conclusions, all other
effects contributing to the isotope shift have to be analyzed.
The only correction which goes beyond the standard QED
treatment is that due to the nuclear polarizability, and is in
general due to the nuclear structure. It is the purpose of this
work to study these effects in muonic deuterium.

Before this, however, we note that there is no unique
definition of the charge radius for all nuclei. It depends on
the nuclear spin, and in particular, there is no established

definition for spin 1 nuclei, such as the deuteron. The mean
square charge radius hR2i for an arbitrary spin I particle is
defined through the effective interaction with the electro-
magnetic field

�H ¼ eA0 � e ~d � ~E� e

�hR2i
6

þ �I

M2

�
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� e

2
QðIiIjÞð2ÞrjEi � ~� � ~B (1)

where � and Q are the magnetic dipole and the electric
quadrupole moments. For a scalar particle �0 ¼ 0, and for
a half-spin particle �1=2 ¼ 1=8. For a vector and higher

spin particle we proceed as follows. The most general
Lagrangian for a particle with spin I ¼ 1, which includes
terms linear in the electromagnetic field strength F is [8]
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where u�� ¼ r�u� �r�u�, r� ¼ @� þ ieA�, and

F�� ¼ @�A� � @�A�. The effective nonrelativistic

Hamiltonian obtained from Eq. (2) gives the ~r � ~E term
with the coefficient eQ=6 [9]. What part of this coefficient
should be included in the charge radius, and what in the
kinematical term �I? The most natural assumption is that
hR2i ¼ 0 for a point I ¼ 1 particle. One possible choice for
a point vector particle is g ¼ 1, Q ¼ 0, and another one
g ¼ 2, Q ¼ �1=m2. The second choice has the advantage
that it leads to the renormalized QED theory of a charged
vector particle, while the first choice leads to the simplest
form of the Lagrangian. In this Letter, following [10], we
adopt the first choice, and consequently assume for a vector
and a higher spin particle �I ¼ 0. This assumption affects
the relativistic recoil correction, while the finite nuclear
size correction is
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EFS ¼ 2��

3
�2ð0ÞhR2i; (3)

where �2ð0Þ ¼ ðmr�Þ3=ð�n3Þ�l0, and mr is the �D
reduced mass.

Having defined the leading finite size effect, we proceed
to the evaluation of nuclear structure corrections. A nu-
cleus is not a rigid particle, it can be excited by an orbiting
electron or muon, which results in the shift of atomic
energies. In the following, we derive general formulas for
the nuclear polarizability shift with any Hamiltonian for
deuterium, using the perturbation expansion in the muon
massm over the deuteron massmD, including the so called
Coulomb correction. Here, the deuteron binding energy
counts as m2=mD. Since relativistic effects for the muon,
as well as for the deuteron, can be treated perturbatively,
we start derivation from the leading electric dipole excita-
tions. The nonrelativistic formula for the electric dipole
nuclear (scalar) polarizability correction is

�E¼ �2

�
��D

��������
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1
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r3
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where H0 is the nonrelativistic Coulomb Hamiltonian for
the muon with reduced mass mr. Denoting the nuclear
excitation energy by E, the polarizability correction is
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The nuclear excitation energy E is much larger than a
typical atomic (muonic deuterium) excitation energy;
thus, one may perform the large E expansion of the muonic
matrix element. The appropriate formula for this expansion
in atomic units, E ¼ E=ðmr�

2Þ is�
�

�������� ~r

r3
1

H0 � E0 þ E
~r

r3

���������
�

¼ 4��2ð0Þ
ffiffiffi
2

E

s
þ c1

E
� c2

E

ffiffiffi
2

E

s
þOðE�2Þ; (6)

where

c1ð2SÞ ¼ 1

8
þ 1

2
ln

�
2

E

�
; c2ð2SÞ ¼ 21

32
þ �2

12
;

c1ð2PÞ ¼ 1

24
; c2ð2PÞ ¼ 1

16
:

(7)

From this expansion, the leading electric dipole polari-
zability correction is [11]
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while the leading Coulomb correction, written explicitly
for 2P� 2S transition, is
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where �E is the electric dipole polarizability of a nucleus

�E ¼ 2�

3

Z
ET

dE

E
jh�Dj ~djEij2 (10)

and �E is the mean excitation energy. Both of them have
already been accurately calculated for the deuteron,
namely �E ¼ 0:6330ð13Þ fm3 and �E ¼ 4:94 MeV [12].
Our numerical results obtained in this work are in an
agreement with them. We shall mention that the formula
for the leading Coulomb correction in 1S and 2S states was
first obtained by Friar in [11].
The next-to-leading Coulomb correction, which has not

been considered so far, written explicitly for 2P� 2S
transition, is
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The dipole operator ~d is the position ~R of the proton with
respect to the deuteron mass center. It is thus assumed that
there are no corrections to the electric dipole operator, and
for example, the mass center of the proton coincides with
the charge center of the proton within the nucleus. The
uncertainty introduced by this approximation is unknown.
This is due to the fact that the underlying QCD theory is
nonperturbative and the resulting exact theory of nuclear
forces is not yet known.
In the evaluation of further corrections we take the

infinite nuclear mass limit, thus neglecting nuclear recoil.
The relativistic corrections to the electric dipole polariz-
ability effects can be obtained from the two-photon
exchange amplitude [13]

�E ¼ ie4�2ð0Þ 1
3

Z
ET

dEh�Dj ~djEi2
Z d!

2�

Z d3k

ð2�Þ3

� 1

Eþ!

�
1þ 2!4

ð!2 � k2Þ2
�

� 4

ð!2 þ 2m!� k2Þð!2 � 2m!� k2Þ : (12)

The nuclear excitation energy E is much smaller than the
muon mass m and the nonrelativistic contribution comes

from the region ! � E and k � ffiffiffiffiffiffiffiffiffiffi
2mE

p
. Thus to obtain it

one neglects !2 and !4. The leading nonrelativistic term
agrees with that in Eq. (8), with the reduced mass mr

replaced by a muon mass m. Relativistic correction comes
from the next terms in the small E expansion, namely
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This is the only relativistic correction which is not negli-
gible at our level of accuracy.

The corrections due to higher multipole polarizabilities
and higher order corrections due to the finite deuteron size
can be treated together, and we show that they cancel each
other at the leading order. Let us consider at first the related
muonic matrix element P for the nonrelativistic two-
photon exchange

P ¼
�
�

�������� �

j~r� ~Rj
1

ðH0 � E0 þ EÞ
�

j~r� ~R0j
���������

�
; (14)

where H0 is the nonrelativistic Hamiltonian for the muon

in the nonrecoil limit, and ~R is a position of proton with
respect to the nuclear mass center. Using on mass shell
approximation with subtractions of the leading Coulomb
interaction, the finite size, and the electric dipole polar-
izability, it becomes
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where we performed expansion in the small parameterffiffiffiffiffiffiffiffiffiffi
2mE

p j ~R� ~R0j. The corresponding correction to atomic
energy is
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Eð ~RÞP:
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Consider now the first E-independent term. When
�E ¼ �D, it will be the elastic part know as a Zemach
correction [14], but the inclusion of all excited states leads

to �ð ~R� ~R0Þ and the j ~R� ~R0j3 term vanishes completely.
As a result, there is no Zemach [elastic Oð�5Þ] correction
for muonic deuterium. From Eq. (15) only the second term
remains, which gives

�QE ¼ 2�
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These corrections are due to the electric dipole, the quad-
rupole and the monopole nuclear excitations, namely

�QE ¼ 2�
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As we assumed at the beginning, all corrections of order
�5m2=mD are neglected. However, due to the large mag-
netic moment anomaly of the proton and the neutron, we
make an exception and consider the magnetic dipole polar-
izability correction. It comes from

HM1 ¼ � ~� � ~B ¼ � e

2mp

ðgp ~sp þ gn ~snÞ � ~B

� � eðgp � gnÞ
2mp

ð ~sp � ~snÞ
2

� ~B; (19)

where gp ¼ 5:586, and gn ¼ �3:826. We use the analo-

gous two-photon exchange formula as for the electric
dipole transitions
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and perform the nonrelativistic approximation:
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Corrections due to the intrinsic proton polarizability and
the proton Zemach moment are to a good approximation,
the same as in muonic hydrogen. Therefore, we use a
recent result of very thorough calculations [15] �Eð2SÞ ¼
�36:9ð2:4Þ �eV and scale it by a factor

�PE ¼ ��Eð2SÞm3
rD=m

3
rH: (22)

The final expression for the nuclear polarizability com-
bined with the elastic contribution is

�E ¼ �0Eþ �CEþ �REþ �QEþ �MEþ �PE: (23)

Numerical calculation of deuteron matrix elements
are performed using the discrete variable representation
(DVR) [16] method. In the DVR method, the Hamiltonian
is represented as a symmetric matrix, which can be diago-
nalized and all formulas represented as a finite sum over
the spectrum. Numerical results using the modern nu-
cleon-nucleon AV18 potential from Argonne National
Laboratory [17], are presented in Table I. We have checked

PRL 106, 193007 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
13 MAY 2011

193007-3



numerics by the calculation of the electric dipole
polarizability, and our result �d ¼ 0:634 fm3 is close to
the recommended value from [12]. The difference of about
0:001 fm3 comes from the fact that we take into account a
small neutron-proton mass difference in the electric dipole
operator.

Surprisingly, the total value �E is close to the non-
relativistic electric dipole polarizability contribution
�0Eþ �C1Eþ �C2E ¼ 1:649 meV. This means that
relativistic and higher multipole corrections, although in-
dividually not small, tend to cancel between themselves.
For the final uncertainty, we assume 50% of these higher
order corrections. We cannot at this moment give a more
reliable estimate of uncertainty, but note that it is about
20 times smaller than the discrepancy in muonic hydrogen.

Our result for the nuclear structure correction �E is not
in good agreement with former calculations. Leidemann
and Rosenfelder in [18] obtained for the polarizability
correction of 2S state the result �1:500ð25Þ meV. This
should be combined with the elastic contribution obtained
by Martynenko [19] of �0:37 meV and the Coulomb
correction of 0.26 meV, which totals to �1:61ð3Þ meV.
This is 2� away from our result, shown in Table I. The
difference may come from three sources. The first one is
lack of clear separation between the elastic contribution
from [19] and the inelastic one from [18]; thus, some terms
might be counted twice. The second one is neglect in [18]
of the intrinsic proton polarizability correction of
0.013 meV [15]. The third source is the extra coefficient
R� ¼ 0:9778 used in [18] for the polarizability correction,

which reflects the fact that the probability of finding the
muon within the deuteron is not exactly �2ð0Þ but
R��

2ð0Þ. To verify this coefficient one has to investigate

the three photon exchange correction, details are beyond
the scope of this work but we claim lack of such
coefficient.

In order to shed light on the proton charge radius dis-
crepancy, we consider the difference EDð2P� 2SÞ �
EHð2P� 2SÞm3

rD=m
3
rH, where the proton size and the

proton polarizability cancel out. This difference is sensitive
to the deuteron structure radius, which is known from a
very accurate H-D (2S� 1S) isotope shift [5]. If agree-
ment between experiment and theoretical predictions
based on QED calculations [20,21] including nuclear po-
larizability correction calculated in this work is observed,
this may mean that the muonic hydrogen discrepancy is
caused by a local (� fm) muon-proton interaction or by a
5� shift in the Rydberg constants [7]. There could be as
well a different source of the discrepancy, a long-range
type interaction (� 200 fm), and this will not cancel out in
the H-D difference, and a small discrepancy in �D will
persist in this case.
In summary, we have demonstrated in this work that

accurate predictions for muonic deuterium are feasible, the
non-QED corrections have been accurately calculated
here, and comparison with experimental transitions in
�D will give hints on a possible source of discrepancies
in the proton charge radius.
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