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We report on the first experimental demonstration of low-light-level cross-phase modulation (XPM)

with double slow light pulses based on the double electromagnetically induced transparency (EIT) in cold

cesium atoms. The double EIT is implemented with two control fields and two weak fields that drive

populations prepared in the two doubly spin-polarized states. Group velocity matching can be obtained by

tuning the intensity of either of the control fields. The XPM is based on the asymmetric M-type five-level

system formed by the two sets of EIT. Enhancement in the XPM by group velocity matching is observed.

Our work advances studies of low-light-level nonlinear optics based on double slow light pulses.

DOI: 10.1103/PhysRevLett.106.193006 PACS numbers: 32.80.Qk, 42.50.Gy

Large cross-phase modulation (XPM) between
two single-photon pulses is crucial in many quantum
information applications. Electromagnetically induced
transparency (EIT) [1] provides an avenue for the imple-
mentation of XPM to obtain a large nonlinearity with a
small loss. The four-level N-type system is a basic EIT-
based XPM scheme [2] which has been demonstrated [3,4].
A modified XPM scheme based on the N-type system has
been demonstrated too [5]. To achieve a significant cross-
phase shift (XPS) with few-photon pulses, the tight focus-
ing of the laser beams and a long atom-photon interaction
time are two requirements. However, the group velocity
mismatch between the probe and signal pulses in the
N-type system limits the interaction time, resulting in an
ultimate limit on the XPS of �0:1 rad for single-photon
pulses [6]. To overcome this limit, Lukin and Imamoğlu
proposed to utilize matched double slow light pulses in
XPM experiments with two atomic species [7]. Many other
variant schemes such as the tripod [8–10], N-tripod
[11,12], and M-type [11,13,14] systems have been pro-
posed too. A recent experiment has demonstrated XPM
with the tripod double EIT system using a hot cell in the
steady-state regime [15]. Here, we report the first experi-
mental realization of XPM based on double slow light
pulses in cold atoms.

Our double EIT and XPM schemes are shown in
Fig. 1(a). Two control fields (controls 1 and 2) drive the
jF ¼ 3i ! jF0 ¼ 3i and jF ¼ 4i ! jF0 ¼ 4i �þ transi-
tions of the D2 line of the cesium atoms and optically
pump the population to the 6S1=2; jF ¼ 3; mF ¼ 3i (j1i)
and jF ¼ 4; mF ¼ 4i (j6i) states. Two weak fields
(i.e., probe and signal) drive the jF ¼ 4i ! jF0 ¼ 3i
��� and jF ¼ 3i ! jF0 ¼ 4i �þ transitions of the D2

line, respectively. Probe and control 1 (signal and control 2)
form a �-type EIT for the states j1i to j3i (j6i to j8i). The
group velocities of the probe and signal pulses can be
easily adjusted to the matching point by varying the inten-
sity of either of the control fields. Compared to other
schemes for obtaining group velocity matching [16],

our scheme is much more flexible because there are infinite
sets of matching conditions.
All laser fields also drive the Zeeman sublevels of the

same hyperfine level. The five states j1i to j5i and the other
five j6i to j10i form two sets of asymmetric M-type sys-
tems (denoted by M1 and M2) [13,14]. In the M1 system,
the probe (signal) drives the � section with (without) the
population while in the M2 system the roles of these two
fields interchange. This M-type model is not a complete
description of the system because there are more Zeeman
sublevels involved. However, in the weak probe and signal

limit, the XPM is dominated by the �ð3Þ. Taking the
M1 system as an example, the probe susceptibility can

be expressed as �p ’ �ð1Þ
p þ �ð3;SPMÞ

p jEpj2 þ �ð3;XPMÞ
p jEsj2

[13,14], where �ð1Þ
p , �ð3;SPMÞ

p , and �ð3;XPMÞ
p are the linear,

self-Kerr, and cross-Kerr susceptibilities, respectively, and
EpðsÞ is the electric field amplitude of the probe (signal).

We keep both control fields and the probe on their reso-

nances and thus �ð1Þ
p is a constant. The XPM of the probe is

obtained by introducing a two-photon detuning in the
signal’s EIT system. Since only the phase difference,
with and without the presence of the signal field, is mea-

sured, the �ð3;SPMÞ
p is not in consideration. The explicit form

of �ð3;XPMÞ
p for the M1 and M2 system can be referred to

Ref. [14,17].
Under the assumptions of the slowly varying amplitudes

and negligible absorption and dispersion, the XPS of the
probe pulse can be expressed as [13,14]

�XPM
p ¼ kl�1=2

@
2j�peak

s j2
4j�sj2

erf½�p�
�p

Re½�3;XPM
p �; (1)

with �p ¼ ð1� vp
g=vs

gÞ
ffiffiffiffiffi
2l

p
=ðvp

g�sÞ, where k is the probe

wave vector, l is the medium length, vpðsÞ
g is the group

velocity for the probe (signal), �s is the transition dipole
moment of the signal transition, and �s is the 1=e half

duration of the signal electric field. The term
erf½�p�
�p

describes the degree of overlapping between the two pulses
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and it reaches a maximum value of 2=
ffiffiffiffi
�

p
when the group

velocities of the two pulses are equal. This highlights the
importance of the group velocity matching.

Our experiment is based on a two-dimensional magneto-
optical trap (MOT) [18] with optically dense atomic
samples. The experimental setup is shown in Fig. 1(b)
and is described in detail in the supplemental material
[17]. Here, we briefly describe those parts related to the
phase measurement. The probe beam is combined with a
far-detuned reference beam to form a beat note interfer-
ometer [19]. The probe and signal beams are coupled into a
polarization-maintaining fiber to ensure perfect over-
lapping. Before entering the MOT, parts of the probe
and reference beams are detected by a photodetector
(NewFocus 1801). This beat note is used to trigger an
oscilloscope (Tektronix DPO4104). After passing through
the MOT, the probe and reference beams are detected by a
photomultiplier tube (PMT, Hamamatsu H6780-20). The
beat note is averaged over 512 times and then saved for
phase shift analysis. The probe pulse is divided into tens of
section. Each section is fit to a sinusoidal curve to obtain
the phase shift versus time. Three subsequent probe pulses
separated by 50 �s and one signal pulse coincident with
the last probe pulse are applied. The phase differences
between the first and the second probe pulses, with typical
rms values of less than 0.02 rad, serve as a check of the
reliability of the measurement. The phase differences be-
tween the second and the third probe pulses are the XPSs.
Whether the slope of the phase versus time for a Gaussian
probe pulse in an EIT system is positive or negative in-
dicates if its two-photon detuning is blue or red [19]. This
allows us to determine the EIT resonances to 1 kHz level.
We found a two-photon shift in the probe EIT resonance of
within 200 kHz induced by the off-resonant excitations of
the control fields. We tune the probe frequency to EIT
resonance every time the control intensity is varied.

The typical EIT spectra are plotted in Figs. 2(a) and 2(b).
The solid lines are the fits to the EIT line shape with the
fitting parameters �, �c, 	, 
c, �, which are the optical
depth (OD), Rabi frequency of the control, ground-state
decoherence rate, control detuning, and an offset in the
transmission due to a small incorrect frequency compo-
nent, respectively. The values of the parameters �p;�c1;

	p; �s;�c2; 	s in Fig. 2 are 53; 0; 42�; 1:64� 10�3�; 87;

0:54�; 0:81� 10�3�, respectively. The FWHM linewidths
for the central EIT peaks for the probe and signal are 122
and 132 kHz, respectively. The intensity FWHM dura-
tions of the input Gaussian pulses are 4 �s. Given these
parameters, the slow light behaviors are shown in Figs. 2(c)
and 2(d). The group delays are both 8:7 �s.
Figure 3(a) shows the group delays for the probe (TD;p)

and signal (TD;s) versus the �c2. The group velocity

matching condition is obtained at �c2 ¼ 0:51�. The TD;s

follows a simple relation TD;s ¼ �s�=�
2
c2 if 	� � �2

c2

[1]. The solid line in Fig. 3(a) shows a plot of this relation
with �s ¼ 80. The TD;p, �p, and �s vary a little among the

�c2 as shown in Figs. 3(a) and 3(b). Figures 3(c) and 3(d)
show the corresponding intensity transmission and FWHM
duration (�FWHM) of the slow light pulses. In the pertu-
rbation limit, the propagation properties of the slow
light pulses can be calculated by the Fourier transform
method using the obtained atomic response function by
solving the steady-state optical Bloch equation [20].
Considering up to the second order dispersion, one can
show that after passing through a medium the intensity
width of a Gaussian pulse is broadened by a factor of

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð16 ln2�s�

2=�2FWHM�
4
c2Þ

q
and the peak intensity
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FIG. 2 (color online). (a),(b) Typical EIT spectrum for the
probe and signal. The solid lines indicate the fitting curves
with parameters described in the main text. The insets zoom in
on the central EIT peaks. (c),(d) The slow light pulses for the
probe and signal under the same parameters. The reference
pulses without the presence of cold atoms are also shown. The
solid lines are the Gaussian fitting curves.
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FIG. 1 (color online). (a) Relevant energy levels of 133Cs atoms
and laser excitations. (b) The XPM experimental setup. M,
mirror; L, lens; BS, beam splitter; PBS, polarizing beam splitter;
AOM, acousto-opitc modulator; =4, quarter-wave plate; =2,
half-wave plate; PH, pinhole; PMT, photomultiplier tube; PM
fiber, polarization-maintaining fiber; MM fiber, multimode fiber.
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is reduced by a factor of expð� 	�s�
�2

c2

Þ 1
�2 . The solid lines in

Figs. 3(c) and 3(d) indicate the plots of these two relations
with 	 ¼ 0:001� and �s ¼ 80.

We first study the steady-state XPM behavior of the
M-type system. Square pulses for both the signal and probe
are applied with a duration long enough such that the probe
response will reach a steady-state value. Figure 4(a) shows
a plot of the transmission of the probe and signal versus the
detuning of the signal 
s after being turned on for 10 �s.
The signal transmission shows the characteristic EIT spec-

trum for a dense medium since it is dominated by the �ð1Þ
s .

The probe transmission also shows an EIT-like spectrum
with a much wider linewidth. However, the probe is
kept at zero detuning. The transmission profile is due to

the Im½�ð3;XPMÞ
p � introduced by the signal field. The

Re½�ð3;XPMÞ
p � causes the XPS of the probe, as shown in

Fig. 4(b). The peak power of the signal field is 50 nW.
We perform a numerical calculation of the optical Bloch

equation for the ten-level system as shown in Fig. 1(a).
Both the steady-state and the transient responses are calcu-
lated. The Runge-Kutta method is used for the transient
calculation. The susceptibility for the transition jii ! jji is
related to the density matrix element �ji by � ¼ �2na�

2
ji�ji

@�0�i
.

The intensity transmission T and the phase shift � are
calculated by the relations T ¼ exp½Imð��Þkl� and � ¼
1
2 Reð�Þkl. The �s, �p, �c1, and �c2 are determined

experimentally from the EIT spectral fittings. The deco-
herence rates for the six ground states are modeled by a
single effective rate 	. The intensity ratio of the probe and
signal is known experimentally. The excited-state decoher-
ence rate is set to a value of 1:5�=2, larger than �=2, to fit
the relatively wide wings in the spectra. The decoherence
in the wings is mainly due to the one-photon effect which

may be contributed from finite laser linewidth and frequ-
ency jitters. In the calculation, the �s is varied to fit the
observed spectrum. The solid lines in Figs. 4(a) and 4(b)
are the calculated spectra at 10 �s with the values for
f�p; �s;�c1;�c2; 	g of f84; 51; 1:12�; 0:76�; 0:0024�g.
The calculation results agree well with the data when
�s ¼ 0:11�, with respect to the j3i ! j4i transition. The
dotted and solid lines in the inset of Fig. 4(b) show the
calculated contributions of the XPS through the j1i ! j2i
and j8i ! j9i transitions, respectively. The line shapes are
the same as the �ð3;XPMÞ

p for the M1 and M2 as calculated
from perturbation theory [17]. The contribution fromM1 is
larger than that fromM2 due to the higher population ratio
in the state j1i. Clear asymmetries in the XPM spectra are
observed. The mechanism of this asymmetry is still un-
clear. We have checked that the measured XPSs are line-
arly dependent on the signal intensity within the saturation
power of our PMT (75 nW).
Next, we studied the effect of group velocity matching

on the XPM in the pulse regime. Since a pulse with a
Gaussian waveform preserves its shape during the propa-
gation and can be modeled analytically, we apply the probe
and signal pulses with such a waveform. The XPS for a
Gaussian probe pulse is time dependent. In the discussion
below, the XPS refers to that measured at the center of the
delayed probe pulse. At a fixed TD;p (� 8 �s), we vary the

�c2 to tune the TD;s and to perform the XPM measurement

for various 
s. The maximum XPS versus the group delay
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FIG. 3 (color online). (a) Group delays of the probe and signal
versus the �c2. (b) The ODs for the probe and signal versus the
�c2. (c) The intensity transmission and the FWHM duration of
the slow light pulses versus the �c2. In (a), (c), and (d) the solid
lines are the theoretical curves described in the main text.
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FIG. 4 (color online). (a) Transmission of the probe and signal
and (b) the XPS for the probe versus the detuning of the signal.
The solid lines in (a) and (b) are the theoretical curves using the
ten-level transient calculation. The dotted and solid lines in
the inset of (b) indicate the calculated XPS results from the
j1i ! j2i and j8i ! j9i transition, respectively. The parameters
are shown in the main text. (c) The maximum XPS for the probe
versus the r ¼ TD;s=TD;p. The solid line shows a plot of the

relation (2), scaled down by a factor of 0.8, with �s ¼ 0:11�.
(d) The maximum XPS versus the group delays for the probe and
signal, tuned to the same values. The solid line shows a plot of
the relation (3) with �s ¼ 0:11�.
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ratio r ¼ TD;s=TD;p are plotted in Fig. 4(c). The �p and �s

are 45 and 60, respectively. The maximum XPS occurs
when r ’ 1. This demonstrates the effect of the group
velocity matching in obtaining the large XPM. Since the
contribution from M1 is larger, and for simplicity in the
analysis, we first consider the XPM from the M1 system.

From (1) and the relation for �ð3;XPMÞ
p;M1 [17], it can be shown

that the maximum XPS

�XPM
p;max ¼

ffiffiffiffi
�

p
�p

8

erfð�pÞ
�p

�2
s

�2
c1

; (2)

if 	� � �2
c1. The solid line in Fig. 4(c) shows a plot of this

relation with �p ¼ 45, �c1 ¼ 0:50�, �s ¼ 0:11�, and a

scaling factor of 0.8. Such a simplified consideration quali-
tatively captures the major trend in the data. However,
more sophisticated analysis based on the Maxwell-Bloch
equations is required to quantitatively compare the data,
taking into account the nonadiabatic effect, pulse attenu-
ation and broadening, the transverse intensity profile of the
laser beams, and all XPM contributions from the ten-level
system. By comparing the r ’ 1 point to the extrapolated
r ¼ 0 point in which the signal propagates at vacuum light
speed, the enhancement factor due to group velocity
matching is �2. However, such a consideration overesti-
mates the enhancement, if the contribution from M2 is
included. The XPS depends on the overlapping factor as

well as on the Re½�3;XPM
p �. From relation (1), �ð3;XPMÞ

p;M1 and

�ð3;XPMÞ
p;M2 [17], it can be shown that the maximum of the

Re½�ð3;XPMÞ
p;M1 � has no dependence on the �c2 (and thus the

TD;s) but that from the M2 does have a slight dependence

on the TD;s. With the parameters for Fig. 4(c), we estimate

that �30% of the enhancement is from the variation of

Re½�ð3;XPMÞ
p �.

We then fixed at the matching conditions and vary the
group delays for both pulses together. Figure 4(d) shows
the maximum XPS versus the group delay. It has a nearly
linear dependence. To understand this, we consider the
XPM contribution from the M1 system only. By setting
the overlapping factor to its maximum value and putting
the relation TD;p ¼ �p�=�

2
c1 into relation (2), we obtain a

simple relation for the maximum XPS,

�XPM
p;max ¼ �2

s

4�
TD;p: (3)

The solid line in Fig. 4(d) indicates a plot of this relation
with �s ¼ 0:11�. We emphasize that the observed nearly
linear dependence on the TD is true only with large enough
ODs. Otherwise, the signal broadens and decays signifi-
cantly for long group delays. The gain in the interaction
time may be compensated by the loss in the interaction
strength. With ODs on the order of 30, the observed XPSs
are almost constant for different TD.

The 0.89 rad XPS shown in Fig. 4(d) is the largest
we have ever obtained. The additional probe loss at the

maximum XPS value compared to that at zero 
s is 37%.
The obtained XPS is 1:0� 10�6 rad per signal photon. If
one could focus the beam down to the atomic absorption
cross section 32=2�, the single-photon-level XPS would
be 0.015 rad. Without the double slow light scheme, the
M-type XPM limit is the same as for the N-type system
[21]. Considering the averaged Clebsch-Gordan coeffi-
cients for the signal transitions in our scheme, this limit
is 0.046 rad per signal photon. Although we have used the
double slow light scheme, the result is still a factor of 3 less
than the limit without such a scheme. The reason lies in a
drawback to the current scheme. A detuning on the signal’s
EIT system is required to induce the XPM on the probe.

The large loss of the signal due to the �ð1Þ
s degrades the

performance of XPM. To implement a modified scheme

with a significant �3;XPM
p but with both EIT systems on

their two-photon resonances will be necessary to take full
advantage of the double slow light scheme. This develop-
ment will be addressed in future work.
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