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We explore the ability of experimental physics to uncover the underlying structure of the gravitational

Lagrangian describing inflation. While the observable degeneracy of the inflationary parameter space is

large, future measurements of observables beyond the adiabatic and tensor two-point functions, such as

non-Gaussianity or isocurvature modes, might reduce this degeneracy. We show that, even in the absence

of such observables, the range of possible inflaton potentials can be reduced with a precision measurement

of the tensor spectral index, as might be possible with a direct detection of primordial gravitational waves.
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In the simplest realizations of the inflationary universe
paradigm, acceleration expansion is generated by a single
canonically normalized scalar inflaton field � with a po-
tential Vð�Þ. Within this setting, there exists a unique
mapping between the set of observables and the free
parameters of the Lagrangian; in single field, slow roll
inflation the observables are determined by the potential,
O½Vð�Þ�. There are, however, a vast number of ways to
achieve the desired acceleration including models involv-
ing multifields, nonstandard kinetic terms, and nontrivial
gravitational couplings. In such elaborate settings the ob-
servables depend on modified or even additional degrees of
freedom, O½Vð�Þ; Fð�; � � �Þ�. Further, any process de-
signed to ‘‘invert’’ a subset of observables to obtain the
underlying free parameters of the Lagrangian will reveal a
space of Lagrangians that is not observationally unique.
This degeneracy problem is well known and is a formi-
dable challenge for cosmologist attempting to identify the
inflaton. Fortunately, many of the alternatives to canonical
single field inflation produce unique observational signa-
tures, such as non-Gaussian and/or isocurvature perturba-
tions. Such observations beyond the two-point adiabatic
and tensor power spectra can be used to distinguish be-
tween these models and break the degeneracy [1].
However, of particular concern is the future possibility
that such discriminating observables are not detected.
While this problem has been previously documented, there
has been no attempt to systematically determine the size of
the degeneracy, for example, by estimating the envelope of
different potentials Vð�Þ within the larger class of inflation
theories that yield the same observables.

In this work, we take an initial step in estimating the
magnitude of this degeneracy by performing Monte Carlo
potential reconstructions within the context of two broad
classes of alternatives to canonical single field inflation,
in the absence of discriminating observations. First we
consider the case in which the perturbation spectra are

generated by degrees of freedom that are decoupled from
the inflationary dynamics, and second, the case where the
inflationary dynamics are extended beyond the paradigm of
single field, canonical inflation by altering dynamical de-
grees of freedom. As representative examples of such mod-
els we examine, respectively, the curvaton scenario, in
which a noninflationary degree of freedom generates the
primordial perturbations, and Dirac-Born-Infeld (DBI) in-
flation, in which a noncanonical kinetic term contributes to
the inflationary dynamics.
In canonical single field models, the reconstruction pro-

gram reveals that inflationary potentials can be grouped into
three distinct classes based on their observable predictions
for ns, the spectral index of scalar perturbations, and r, the
tensor/scalar ratio; i.e., vast numbers of inflationary poten-
tials organize themselves into a few observational families
(cf. Fig. 1). This classification scheme is commonly re-
ferred to as the ‘‘zoology’’ of inflation models [4,5].
‘‘Hybrid’’ models include potentials that evolve asymptoti-
cally to their minima, requiring an auxiliary field to end
inflation. However, they are effectively single field models
with nonvanishing energy density at the minimum, and
have the common form Vð�Þ / 1þ ð�=�Þp, where � is
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FIG. 1 (color online). Zoology of inflation models.
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an energy scale and p a positive integer. They are charac-
terized by the conditions V00ð�Þ> 0 and ð logVð�ÞÞ00 > 0.
The simplest models of tree-level hybrid inflation [6,7]
belong to this class. ‘‘Small field’’ and ‘‘large field’’ models
are differentiated by their initial field values. Large field
models, for example m2�2 inflation [8], are characterized
by a field initially displaced far from its minimum, with the
general form Vð�Þ / ð�=�Þp, satisfying V00ð�Þ> 0 and
ðlogVð�ÞÞ00 < 0. Conversely, small field models are char-
acterized by a field initially close to the origin, with general
form Vð�Þ / 1� ð�=�Þp (near the maximum), satisfying
V 00ð�Þ< 0 and ð logVð�ÞÞ00 < 0; ‘‘new’’ inflation and
models based on spontaneous symmetry breaking belong
to this class. If the simplest implementation of canonical
single field inflation is assumed, we may hope to determine
which class of the above potentials is ultimately responsible
for driving inflation. To what degree is our ability to re-
construct the physics of inflation threatened by relaxing this
assumption?

In the curvaton scenario [9–11], the central assumption
of traditional reconstruction—that the inflaton generates
the primordial spectra—is relaxed. Without knowledge of
how the spectra were generated, whether by the inflaton or
by some other means, a unique inversion of observables is
clearly impossible. The curvaton field, �, is weakly
coupled and relatively light during inflation, m2 � H2.
It influences the primordial power spectrum, P�ðkÞ ¼
k3j�j2=2�2, via the final curvature perturbation

� ¼ � 1

2

H

M2
PlH

0 ���
~fð�Þffiffiffi
2

p
MPl

��; (1)

where �� and �� are the inflaton and curvaton vacuum

fluctuations, and ~fð�Þ controls the contribution of the
curvaton to the overall perturbation. After inflation ends,
the curvaton rolls to its minimum where it begins to
oscillate during the postinflationary phase. These oscilla-
tions set up a small isocurvature perturbation that grows
with time. After the curvaton decays, the perturbation is
converted to an adiabatic mode and structure begins to
evolve according to the standard model. Measurements
of the adiabatic perturbation spectrum derived from
Eq. (1) and the tensor/scalar ratio r do not uniquely deter-

mine the potential Vð�Þ unless ~fð�Þ can be constrained,
leading to the possibility of the same potential giving rise
to a wide range of observables. For example, the first two
derivatives of Vð�Þ can be written

V 0
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p V0

MPl
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; (2)

V 00
curv ¼ V0
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16� ~f2r

�
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However, depending on the thermal history and the energy
density of the curvaton at the time of decay, there may be
residual isocurvature modes or primordial ‘‘local’’-type
non-Gaussianity large enough to be detected in future
experiments; these additional observables might enable a

determination of ~fð�Þ. We consider the effects of such
observations on reconstruction in [2]—in this analysis we
assume that they are not detected.
A degeneracy problem might also arise in the context of

noncanonical models [3,12]. In noncanonical models, the
inflaton field Lagrangian includes nonstandard kinetic
terms LðX;�Þ, where 2X � @��@��. We study the

most well-motivated case—that of the nonlinear Lorentz

invariant DBI action L ¼ �f�1ð�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2fð�ÞXp þ

f�1ð�Þ � Vð�Þ, where fð�Þ is the ‘‘warp factor’’
[13,14]. In the DBI model, the inflaton speed is bounded

from above by a generalized Lorentz factor ��1 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fð�Þ _�2

q
, which can lead to a new type of slow roll

inflation even with steep potentials. As a result, cosmo-
logical fluctuations travel with sound speed less than unity,
cs ¼ ��1 � 1, leading to a curvature perturbation that
depends on �,

� ¼ � 1

2

H�

M2
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0 ��: (4)

Despite the formal distinction between the curvaton and
DBI reconstructions, the treatment of the two cases is the
same: a determination of Vð�Þ requires observations of
more than simply the adiabatic density perturbation and
tensor/scalar ratio. The potential in DBI inflation gives

V0
DBI ¼

V0

MPl

ffiffiffi
r
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r
�; (5)
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�

�
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8
r�

�
: (6)

In the case of curvatons, the function ~fð�Þ needs to be
measured; in the case of DBI inflation, the � factor must be
constrained. While large equilateral non-Gaussianities
might be produced in DBI inflation, we assume that future
missions fail to detect them.
We consider only the minimal set of observational

parameters describing the primordial scalar and tensor
power spectra: P�ðkÞ and r. To ascertain the size of the
degeneracy, we employ the flow formalism [15,16], which
is a Monte Carlo approach to potential reconstruction [17].
The inflationary model space is stochastically sampled and
models of interest can be selected out. We first seek to
determine the constraints that can be imposed on Vð�Þ at
Planck precision [18], in the absence of discriminating
observations: we consider 68% C.L. detections of r
(r * 0:01, �r� 0:03) [19], ns (�ns � 0:0038), and
dns=d ln k (�dns=d ln k� 0:005) [20]. Since �nT � 0:1
with a Planck B mode detection, the tensor spectral index
will not be well resolved and will not be included in the
reconstruction. This worst-case reconstruction therefore
makes use of only the adiabatic and tensor two-point
functions on CMB scales. We perform separate analyses
for curvatons, DBI, and canonical single field inflation.
We collect only models that support at least 10
e-foldings of inflation and satisfy the above observational
constraints at k ¼ 0:01 Mpc�1. We present the constraints
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on the first two derivatives of Vð�Þ in Fig. 2(a): magenta or
light gray (BW), black, and blue or dark gray (BW) points
denote single field, curvaton, and DBI models, respec-
tively. The constraints depend only weakly on the fiducial
observables chosen [2]: in Figs. 2(a) and 2(c) we choose
r ¼ 0:15, ns ¼ 0:97, and dns=d ln k ¼ 0 for the pote-
ntial reconstructions. If r is not measured (r & 0:05 with
Planck) then the uncertainty in Vð�Þ extends to V 0=V ¼ 0,
but is of the same order of magnitude as in the case
r ¼ 0:15 [2,3]. Even an improved measurement of r by
next-generation CMB experiments like CMBPol will
scarcely improve constraints on Vð�Þ in the presence of the
degeneracy [2,3].

We next examine the effects of the unresolved degener-
acy on the zoology by sorting the curvaton and DBI models
by (ns, r) according to the potential classification: small
field, large field, and hybrid. We find that all observables
that are compatible with canonical single large field mod-
els are also consistent with curvaton and/or DBI hybrid
models. Furthermore, we find that all observations com-
patible with canonical single small field models are also
consistent with both large field and hybrid curvaton and/or
DBI models. Only those hybrid models existing in the
single field ‘‘hybrid’’ region can be correctly classified
in the presence of the degeneracy; i.e., they must satisfy
r > 8ð1� nsÞ. We present the zoology in Fig. 2(b)
indicating in gray regions in which at least two classes of
model overlap.

We have obtained the worst-case degeneracy by utilizing
only the two-point adiabatic and tensor spectra on CMB
scales in the reconstructions. It is certainly possible that
these will be the only detected observables: canonical
single field inflation could be the true underlying model,
curvatons need not generate detectable isocurvature modes
or non-Gaussianity, and DBI inflation will fail to generate
observable non-Gaussianity if the sound speed cs * 0:1.
However, we need not restrict ourselves to observables on
CMB scales only: primordial gravitational waves on scales
k� � 1014 Mpc�1 can be used to measure the tensor spec-
tral index, nT , at a precision surpassing that possible with a
detection of B modes on CMB scales. Future space-based
laser interferometers, like Big Bang Observer (BBO) [21]
and Japan’s Deci-hertz Interferometer Gravitational Wave
Observatory (DECIGO) [22], will detect gravitational
waves if B modes on CMB scales give r * 10�3 and
r * 10�6, respectively. This range includes a substantial
portion of the inflationary model space. In comparison
with an ideal B mode detection on CMB scales, a direct
detection with BBO will yield comparable constraints
(�nT � 10�2) while DECIGO gives the best measurement:
�nT � 10�3 or better [23,24].
The tensor index turns out to be highly valuable to the

reconstruction program, since, while canonical single field
inflation predicts the consistency condition r ¼ �nT=8,
alternative theories typically yield modified relations:

curvatons predict r ¼ �16nT=ð2� ~f2ð�ÞnTÞ and DBI
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FIG. 2 (color online). (a) Monte Carlo results for the worst-case degeneracy at Planck-precision using r, ns, and dns=d ln k in the
canonical single field [magenta or light gray (BW)], curvaton (black), and DBI [blue or dark gray (BW)] reconstructions. (b) Zoology
of the worst-case degeneracy (a). Gray areas denote regions in which multiple classes overlap: only hybrid models can be uniquely
classified. (c) Monte Carlo results for the best-case degeneracy utilizing a direct detection of primordial gravitational waves at
DECIGO precision to constrain nT with the same observables as in (a). (d) Zoology of models that results from the best-case
degeneracy (c).
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inflation predicts r ¼ �8csnT . With the modified

conditions, we find that ~f2ð�Þ drops out of the curvaton
reconstruction, Eqs. (2) and (3), giving V 0

curv/V0
ffiffiffiffiffiffiffiffiffiffi�nT

p
and

V 00
curv/�V 00

csfnT=r, where V 00
csf is the canonical single

field reconstruction. Likewise for DBI, � vanishes from
Eqs. (5) and (6) giving V 0

DBI/�V0nT=
ffiffiffi
r

p
and V 00

DBI/�V0ðns�1�3nTÞnT=r.
We stress that we are not considering cases in which the

values of r and nT violate one or more of the above
consistency conditions; i.e., we are assuming that the de-
generacy remains intact. The range of Vð�Þ is reduced
despite the unbroken degeneracy because the consistency
conditions constrain precisely the degrees of freedom that

are necessary for an inversion of the potential: ~f2ð�Þ for
curvatons and cs for DBI inflation. We need not know a
priori which condition to impose—we impose each one
that agrees with the fiducial r and nT to within experimen-
tal error and perform the reconstruction.

We assume that the tensor spectrum is of the form

PhðkÞ ¼ Phðk0Þ
�
k

k0

�
nTþð1=2Þ�T lnðk=k0Þ

; (7)

where �T ¼ dnT=d ln k is the tensor index running and
k0 ¼ 0:01 Mpc�1. The challenge is that direct detection
experiments determine nTðk�Þ, while the consistency rela-
tions are functions of nTðk0Þ. In principle, the spectrum
Eq. (7) provides the mapping from k� to k0; however, �T is
unlikely to be reliably constrained by these experiments.
Although likely small, our ignorance of �T limits the
accuracy of the extrapolation from k0 to k� and contributes
to the error on nT [25,26],

�nT ¼
��

6	 10�18

XAGWPhðk�Þ
�
2 þ

�
1

2
�T ln

�
k�
k0

��
2
�
1=2

; (8)

where AGW ¼ 2:74	 10�6 and X characterizes the experi-
ment: X ¼ 0:25 for BBO and X ¼ 100 for DECIGO. In
Fig. 2(c) we present the best-case reconstruction including
a direct detection of nT at DECIGO precision with a
fiducial value of nT ¼ �r=8 ¼ �0:018 75, in agreement
with all three consistency conditions. We find that the
curvaton models (black) are almost as well constrained
as canonical single field inflation [magenta or light gray
(BW)], while for DBI [blue or dark gray (BW)] we find
V 00
DBI 
 V 00

csf and V 0
DBI 
 2V 0

csf . In addition, with a mea-

surement of nT the zoology can be partially recovered
compared to the worst-case degeneracy, Fig. 2(b). In the
event of a future detection with DECIGO together with a
moderate amplitude of tensors, r ¼ 0:15, the zoology pos-
sesses regions occupied uniquely by small field, large
field, and hybrid models, shown in Fig. 2(d). Constraints
on models with smaller fiducial r are also improved
although to a lesser degree. We note that measurements
of nT at BBO precision also offer improvements over the
worst-case degeneracy, but for brevity we present only the
best-case reconstruction here (see [2,3]).

In conclusion, while we may never know the true
underlying theory of inflation, we have found that it is

nonetheless still possible to vastly improve our understand-
ing of the inflaton potential despite this.
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