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Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized

plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be

either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-

dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike

its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this,

EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction

and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit

inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare

inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
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Simulations and results.—
Introduction.—Astrophysical plasmas are observed in a

wide range of length scales. On large scales, we can treat
such plasmas as conducting fluids and therefore we can use
magnetohydrodynamics (MHD). Although MHD is a
simple and powerful tool for large scales, it is not suitable
for describing small-scale physics, especially physics near
and below the proton gyroscale. Since many astrophysical
processes critically depend on small-scale physics, proper
description of small-scale physics is needed. There are
several numerical models that can handle small-scale
physics. Perhaps a full kinetic treatment would be the
best for proper description of small-scale physics.
However, a full kinetic description of plasmas is still a
challenge for modern computers.

Electron magnetohydrodynamics (EMHD) is a fluidlike
model of small-scale plasmas [1] and can be viewed as Hall
MHD in the limit of k�i � 1, where �i is the ion gyrora-
dius and k the wave number. On scales below the ion
inertial length di ¼ c=!pi, where c is the speed of light

and!pi is the ion plasma frequency, we can assume that the

ions create only smooth motionless background and fast
electron flows carry all the current, so that

v e ¼ � J

nee
¼ � c

4�nee
r� B; (1)

where ve is the electron velocity, J is the electric current
density, B is the magnetic field, ne is the electron number
density, and e is the absolute value of the electric charge.
Inserting this into the usual magnetic induction equation
[@B=@t ¼ r� ðve � BÞ þ �r2B], we obtain the EMHD
equation

@B

@t
¼ � c

4�nee
r� ½ðr �BÞ � B� þ �r2B: (2)

Note that, in this Letter, we only consider the zero (norma-
lized) electron inertial length case: de ¼ c=ð!peLÞ ! 0,

where !pe is the electron plasma frequency and L is the

typical size of the system.
As is the case with large scales, magnetized turbulence

on small scales also affects many physical processes and
hence is of great interest for studies of magnetic reconnec-
tion [2,3], space plasmas and the solar wind [4–13], neu-
tron stars [14–16], advection dominated accretion flows
[17], etc. Because of its simplicity, EMHD formalism has
been used for studies of small-scale turbulence [18–25].

Earlier studies revealed that EbðkÞ / k�7=3 [18,19,26], and
anisotropic turbulence structures [21,23,27].
In the presence of a strong mean field B0, an MHD

perturbation moves along magnetic field at the Alfvén
speed (/ B0) and MHD wave packets moving in one
direction do not interact with each other and do not create
turbulence. Therefore, collisions of opposite-traveling
wave packets are essential for the generation of MHD
turbulence. In contrast, an EMHD perturbation moves
along the magnetic field at a speed proportional to kB0,
which implies that a perturbation with larger k is faster
than that with smaller k. As a result, whistler waves are
dispersive and whistler wave packets moving in one direc-
tion can self-interact and produce small-scale structures
(see [20] for 2D EMHD), which means that collisions of
whistler wave packets are not essential for the generation
of EMHD turbulence. Therefore understanding the dynam-
ics of EMHD wave packets is important for the study of
EMHD turbulence. Traveling EMHD wave packets can
commonly occur in nature. Any local disturbances can
create wave packets traveling along magnetic field lines.
Therefore, the propagation of whistler wave packets
moving in one direction deserves scrutiny. In this Letter,
we study the propagation of 3D EMHD wave packets in
detail.
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Numerical method.—We have calculated the time evo-
lution of 3D incompressible EMHD wave packets moving
in one direction. We have adopted a pseudospectral code to
solve the normalized incompressible EMHD equation in a
periodic box of size 2�:

@B

@t
¼ �r� ½ðr �BÞ � B� þ �0r2B; (3)

where the magnetic field, time, and length are normalized
by a mean field B0, the whistler time tw ¼ L2ð!pe=cÞ2=�e

(�e ¼ electron gyrofrequency), and a characteristic length
scale L (see, e.g., [28]). The resistivity �0 in Eq. (3) is
dimensionless. The dispersion relation of a whistler wave
in this normalized unit is ! ¼ kkkB0, where kk is the wave
number parallel to the mean magnetic field. The magnetic
field consists of the uniform background field and a fluc-
tuating field: B ¼ B0 þ b. The strength of the uniform
background field B0 is set to 1. We use either 2563 or
5123 collocation points. At t ¼ 0, all waves are moving
in the same direction and their wave numbers are restricted
to the range 8 � k � 15 in wave vector (k) space. The
direction of propagation corresponds to the positive direc-
tion of the mean magnetic field in our simulations.
(Hereinafter, we use positive and negative to denote the
direction of wave propagation with respect to the magnetic
field.) The amplitudes of the random magnetic field at
t ¼ 0 is �1. Hyperdiffusivity is used for the diffusion
term. The power of hyperdiffusivity is set to 3, so that
the dissipation term in the above equation is replaced with
�3ðr2Þ3B, where �3 is approximately 3� 10�10 for 2563

and 1� 10�11 for 5123.
Results.—Figure 1 shows time evolution of magnetic

energy density. The solid curves denote the total magnetic
energy density (i.e., the total energy of the wave packets
moving in both the positive and the negative directions)
and the dotted curves the energy of wave packets moving
in the negative direction. We can see that wave packets
initially moving only in the positive direction can create
waves moving in the negative direction. Although the
energy of wave packets moving in the negative direction
is small (at most a few percent compared with the energy of
the wave packets moving in the positive direction), we
clearly observe that magnetic energy decays. Results
from 5123 (thick curves) and 2563 (thin cures) show a
reasonable agreement.

Figure 2 shows magnetic energy spectrum as a function
of time. At t ¼ 0, Fourier modes between k ¼ 8 and
k ¼ 15 are excited. The long-dashed curves in Fig. 2
show the initial spectrum. As time goes on, the initial
energy cascades down to smaller scales and, as a result, a
power-law-like spectrum forms for k > 15. At the same
time the peak of the energy spectrum moves to larger
scales, so that the wave number at which the spectrum
peaks, kp, gets smaller. We clearly observe inverse cascade

of magnetic energy.

The magnetic helicity is a conserved quantity in EMHD
[28]. Figure 3 shows that the magnetic helicity is extremely
well conserved. The solid curves denote the net magnetic
helicity (i.e., the helicity of wave packets moving in the
positive direction minus that in the negative direction) and
the dotted curves the helicity of wave packets moving in
the negative direction. The helicity of the wave packets
moving in the negative direction is much smaller than that
of the waves moving the other way. As in Fig. 1, thick
curves are for 5123 and thin curves for 2563.

FIG. 1. Time evolution of the fluctuating magnetic energy
density b2. Initially all wave packets move in the same direction.
Because of self-interaction, b2 decreases as time goes on (solid
curves). Self-interaction generates waves traveling in the oppo-
site direction (dotted curves). The energy of the opposite-
traveling waves is no larger than a few percent of the energy
of the waves moving in the original direction. The thin curves are
for 2563 and the thick ones for 5123.

FIG. 2. Magnetic spectra showing inverse energy cascade. The
peak of magnetic energy spectrum moves to larger scales. Note
that EðkpÞ, where kp is the wave number at which the magnetic

energy spectrum peaks, is almost constant. Magnetic helicity
conservation plays a key role in the inverse cascade.
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Theoretical interpretations.—
Helicity decomposition.—An EMHD wave traveling

along the magnetic field lines is circularly polarized. In
Fourier space, the bases that describe circular polari-
zation are

�̂þ � ðŝ1 þ iŝ2Þ=
ffiffiffi

2
p

and �̂� � ðŝ1 � iŝ2Þ=
ffiffiffi

2
p

; (4)

where ŝ1 and ŝ2 are orthogonal unit vectors perpendicular

to k and we assume ŝ1 � ŝ2 ¼ k̂ ¼ k=k. Any EMHD
Fourier mode can be decomposed into a ‘‘þ’’ wave and a
‘‘�’’ wave:

~b k ¼ ~bþ�̂þ þ ~b��̂�; (5)

where ~bk ¼ ~b1ŝ1 þ ~b2ŝ2, ~bþ ¼ ð~b1 � i~b2Þ=
ffiffiffi

2
p

, and ~b� ¼
ð~b1 þ i~b2Þ=

ffiffiffi

2
p

.
The þ wave moves in the positive direction and the �

wave in the negative (i.e., opposite) direction with respect
to magnetic field. Let us consider a þ wave. In Fourier
space, we can show that

@ð~bþ�̂þÞ=@t ¼ �ikkkB0ð~bþ�̂þÞ (6)

(see, e.g., [28]). Therefore, we have ~bþ ¼ b0 expð�i!tÞ,
where b0 is a constant. Fourier transform of ~bþ to real
space gives a plane wave whose velocity relative to the
magnetic field is positive.

The þ wave has a positive magnetic helicity and the �
wave a negative magnetic helicity. Let us consider a þ
wave. In Fourier space, we can show that the Fourier
component of the vector potential is given by

~a k ¼ ~aþ�̂þ ¼ ð~bþ=kÞ�̂þ; (7)

where we use the Coulomb gauge. Therefore, the magnetic
helicity of the þ wave is positive.

Inverse cascade.—The magnetic helicity is a conserved
quantity in EMHD (see, e.g., [28]). For an EMHD wave
packet composed of only þ waves, the magnetic helicity
spectrum EhðkÞ is simply

EhðkÞ ¼ EbðkÞ=k: (8)

Therefore, the helicity dissipation rate becomes negligible
when kd, where kd is the dissipation wave number, is large
with respect to kp. Note, however, that energy dissipation

rate can be non-negligible. Therefore, as energy dissipates,
the peak wave number kp should become smaller.

Since
R

EhðkÞdk is nearly constant and
R

EhðkÞdk�
½EbðkpÞ=kp�kp � EbðkpÞ, we have EbðkpÞ � const (see

Fig. 2; see also left panel of Fig. 4). Since b2 � EbðkpÞkp /
kp, we expect that

kpðtÞ / b2ðtÞ; (9)

which is confirmed by the right panel of Fig. 4. We

obtained kp in such a way that
P

k�0:5�jk0j<kþ0:5j~bðk0Þj2
(k ¼ 1:0; 1:2; 1:4; 1:6; . . . ) is maximum at k ¼ kp.

Comparison with 2D hydrodynamic turbulence.—We
find a very good correspondence between 3D EMHD
turbulence and 2D incompressible hydrodynamic turbu-
lence. The 2D incompressible hydrodynamic equation
has two ideal invariants: the energy and the enstrophy
(/ R jr � vj2d2x). The spectrum of enstrophy is EenðkÞ ¼
k2EvðkÞ, where EvðkÞ is energy spectrum of velocity. In
driven 2D hydrodynamic turbulence, both energy and ens-
trophy involve turbulence cascade: enstrophy exhibits for-
ward cascade and energy inverse cascade. When energy is
the cascading quantity, which is the case for scales larger
than the energy injection scale, we have

v2
l

l=vl

� kEvðkÞ
1=ðk ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kEvðkÞ
p Þ ¼ const ! EvðkÞ / k�5=3; (10)

where we used vl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kEvðkÞ
p

. On the other hand, when
enstrophy is the cascading quantity, which is the case for
scales smaller than the energy injection scale, we have

kk2EvðkÞ
1=ðk ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kEvðkÞ
p Þ ¼ const ! EvðkÞ / k�3; (11)

where we used EenðkÞ ¼ k2EvðkÞ. In this case, interactions
are nonlocal in wave vector space.
In 3D EMHD turbulence, magnetic energy and magnetic

helicity are conserved quantities in the absence of dissipa-
tion. Therefore, either magnetic energy or magnetic helic-
ity can involve energy cascade. Using arguments similar to
the 2D hydrodynamic case, we can obtain magnetic energy
spectrum.When magnetic energy is the cascading quantity,
we have

b2l
l=vl

/ kEbðkÞ
1=ðk ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kk2EbðkÞ
p Þ

¼ const ! EbðkÞ / k�7=3; (12)

FIG. 3. Helicity conservation. The net magnetic helicity (solid
curves) is well conserved. The dotted curves denote the absolute
values of magnetic helicity in opposite-traveling wave packets,
which are generated by self-interaction of the initial wave
packets. The thin curves are for 2563 and the thick ones for 5123.
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where we used v / J / r� B, which means EvðkÞ /
k2EbðkÞ. On the other hand, when magnetic helicity is
the cascading quantity, we have

kEbðkÞ=k
1=ðk ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kk2EbðkÞ
p Þ ¼ const ! EbðkÞ / k�5=3; (13)

where we used Eq. (8) (see also [11]).
When we inject magnetic helicity (and, hence, magnetic

energy) on a scale, we expect to see both inverse and
forward energy cascade. It is well known that when energy
is injected on a scale, the energy cascades down to smaller
scales and the small-scale magnetic energy spectrum is

proportional to k�7=3. Therefore, it is evident that magnetic
energy exhibits forward cascade. However, it is not clear
what is the cascading entity for the inverse cascade. We
will address this issue elsewhere (Kim et al. [29]).

In summary, we have shown that EMHD wave packets
moving in one direction can create opposite-traveling wave
packets through self-interaction and that, because of mag-
netic helicity conservation, EMHD wave packets moving
in one direction show inverse energy cascade. Inverse
cascade of energy can affect transport phenomena, such
as heat transport, and potentially be a source of plasma
instabilities. It is also potentially important for magnetic
reconnection and evolution of magnetic field in neutron
stars. In general, traveling EMHD wave packets can be a
source of magnetic helicity, which could affect evolution of
a large-scale magnetic field.
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constant. Left panel: Schematic diagram showing constancy of
EbðkpÞ. See Fig. 2 for actual simulation results. Right panel:

Simulation result that confirms constancy of b2ðtÞ=kpðtÞ.
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