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We present an approach to characterize genuine multiparticle entanglement by using appropriate

approximations in the space of quantum states. This leads to a criterion for entanglement which can easily

be calculated by using semidefinite programing and improves all existing approaches significantly.

Experimentally, it can also be evaluated when only some observables are measured. Furthermore, it

results in a computable entanglement monotone for genuine multiparticle entanglement. Based on this, we

develop an analytical approach for the entanglement detection in cluster states, leading to an exponential

improvement compared with existing schemes.
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Introduction.—The characterization of multiparticle
quantum correlations is relevant for many physical sys-
tems like atoms in optical lattices, superconducting qu-
bits, or nitrogen-vacancy centers in diamond, to name
only some recent examples [1]. In the field of quantum
information, multiparticle entanglement is viewed as a
resource, enabling tasks like measurement-based quan-
tum computation [2] or high-precision metrology [3]. In
spite of many efforts, the characterization of these cor-
relations turns out to be difficult. Especially genuine
multipartite entanglement, which is most important
from the experimental point of view, remains unruly,
and only scattered results concerning its characterization
are known [4–7].

In this Letter, we derive a general method to characterize
genuine multiparticle entanglement using suitable relaxa-
tions. This relaxed problem turns out to be good-natured,
can be tackled with different methods, and results in a
criterion that can be considered as a generalization of the
Peres-Horodecki criterion [8] to the multipartite case. The
goal of our work is twofold. First, we present powerful
criteria for genuine multiparticle entanglement, which can
be efficiently evaluated by using semidefinite programing
and improve existing conditions significantly. They work
for multiqubit, continuous-variable, or hybrid systems and
can be evaluated, even if the mean values of only a few
observables are known. Furthermore, they lead to a com-
putable entanglement monotone for genuine multiparticle
entanglement.

Second, our method allows us to analytically derive
entanglement conditions for the family of cluster states
[9], which are important states for tasks like measurement-
based quantum computation. The sensitivity of these con-
ditions improves exponentially with the number of qubits,
which is an exponential gain compared with the existing
conditions. As a side product of our investigations, we will
also estimate the volume of the set of genuinely

multipartite entangled states and gain insight into the
geometrical form of the set of biseparable states.
Situation.—We start by considering a three-particle

quantum state %. This state is separable with respect to
some bipartition, say, AjBC, if it is a mixture of product
states with respect to this bipartition: % ¼ P

kqkj�k
Aih�k

Aj�jc k
BCihc k

BCj, where the qk form a probability distribution.

We denote these states by %
sep
AjBC. Similarly, we can define

the separable states for the two other possible bipartitions
%sep
BjAC and %sep

CjAB.
Then, a state is called biseparable if it can be written as a

mixture of states which are separable with respect to differ-
ent bipartitions [4]. That is, one has

%bs ¼ p1%
sep
AjBC þ p2%

sep
BjAC þ p3%

sep
CjAB: (1)

On the other hand, a state that is not biseparable is called
genuinely multipartite entangled. Whenever we talk about
multipartite entangled states in the following, we refer to
genuinely multipartite entangled states.
To characterize multipartite entanglement, we apply the

method illustrated by Fig. 1. Instead of states like %
sep
AjBC

that are separable with respect to a fixed bipartition, we
consider a larger set of states, which can be more easily
characterized. For instance, for the bipartition AjBC we
may consider states which have a positive partial transpose
(PPT) [10]. It is well known that separable states are also

PPT [8]. We denote such states by %ppt
AjBC (and analogously

for the other bipartitions).
Thus, we ask whether a state can be written as

%pmix ¼ p1%
ppt
AjBC þ p2%

ppt
BjAC þ p3%

ppt
CjAB: (2)

We call states of this form PPT mixtures. Clearly, any
biseparable state is a PPT mixture, so proving that a state
is no PPT mixture implies genuine multipartite entangle-
ment. There are examples of states which are PPT with
respect to any bipartition but nevertheless multipartite
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entangled [11]. Hence, not all multipartite entangled states
can be detected in this way, but, as we will see, often the set
of PPT mixtures is a very good approximation to the set of
biseparable states. Finally, note that all definitions can be
extended to N particles. Also, one may use other relaxa-
tions of bipartite separability, e.g., apply the criterion of
Doherty, Parrilo, and Spedalieri [12].

The advantage of considering PPT mixtures instead of
biseparable states is that the set of PPT mixtures can be
fully characterized with the method of linear semidefinite
programing (SDP) [13]—a standard problem of con-
strained convex optimization theory. Moreover, PPT mix-
tures can also be characterized analytically.

Characterization via entanglement witnesses.—An en-
tanglement witness is an observableW that is non-negative
on all biseparable states but has a negative expectation
value on at least one entangled state. Let us first consider
two particles A and B. Then a decomposable witness is a
witness W that can be written as W ¼ PþQTA , where P
and Q have no negative eigenvalues (they are positive
semidefinite: P;Q � 0) and TA is the partial transpose
with respect to A [14].

For more than two particles, we call a witness W fully
decomposable if, for every subset M of all systems, it is
decomposable with respect to the bipartition given by M
and its complement M. This means there exist positive
semidefinite operators PM and QM such that

for all M: W ¼ PM þQTM

M : (3)

This observable is positive on all PPT mixtures, as it is
non-negative on all states which are PPT with respect to
some bipartition. But also the converse holds.

Observation.—If % is not a PPT mixture, then there
exists a fully decomposable witness W that detects %.

Proof.—The set of PPT mixtures is convex and compact.
Therefore, for any state outside of it, there is a witness that
is positive on all PPT mixtures. Furthermore, positivity on

all states that are PPTwith respect to a fixed (but arbitrary)
bipartition implies that the witness is decomposable with
respect to this fixed (but arbitrary) bipartition [14]. Thus,

W ¼ PM þQTM

M for any M. j

Practical evaluation.—To find a fully decomposable
witness for a given state, the convex optimization tech-
nique SDP becomes important, since it allows us to opti-
mize over all fully decomposable witnesses. Given a
multipartite state %, the search is given by

minTrðW%Þ (4)

such that TrðWÞ ¼ 1 and for all M:

W ¼ PM þQTM

M ; QM � 0; PM � 0:

The free parameters are given by W and the operators PM

for every subsetM. If the minimum in Eq. (4) is negative, %
is not a PPT mixture and hence is genuinely multipartite
entangled. The operator W for which the negative mini-
mum is obtained is a fully decomposable witness. Note
that, due to XTM ¼ ðXTÞTM and X � 0 , XT � 0, a wit-
ness that is decomposable with respect toM is also decom-
posable with respect to M. Thus, one needs to check only
half of all subsets in practice.
Equation (4) has the form of a semidefinite program

[13]. In contrast to usual optimization problems, global
optimality of an SDP can be certified and the solution can
efficiently be computed via interior-point methods. In
practice, Eq. (4) can be solved with few lines of code, by
using, e.g., the parser YALMIP [15] and, as solvers, SEDUMI

[16] or SDPT3 [17]. Our implementation in MATLAB named
PPTMIXER can be found online [18].

Let us discuss two variations of Eq. (4). First, in order to
reduce the number of free parameters, one can restrict
oneself to witnesses W that obey WTM � 0 for all M, i.e.,
PM ¼ 0 for all M. In the following, we will call these
witnesses fully PPT witnesses. For bipartite systems, de-
composable witnesses and fully PPT witnesses detect the
same states. For the multipartite case, fully PPT witnesses
are not as good as fully decomposable witnesses, but they
are easier to characterize.
Second, this SDP can also be modified to account for the

case that, instead of a full tomography, only a restricted set
of observables is measured. Let O ¼ fO1; . . . ; Okg be such
a set of observables. Then, adding W ¼ P

k
i¼1 �iOi to the

constraints in Eq. (4) results in an SDP that searches for
witnesses which can be evaluated by knowing these ob-
servables. Note that for this program the free parameters
are given by the real numbers �i, and their number might
be considerably smaller than in Eq. (4). If the minimum in
Eq. (4) is non-negative, there exists a PPT mixture with
expectation values hOii. However, one may then add fur-
ther observables to O and run the SDP again. Repeating
this procedure gives more and more sensitive tests. We will
discuss an example later. In practice, this program can even
decide separability if the Oi have already been measured,

FIG. 1 (color online). For three qubits, there are three convex
sets of states that are separable with respect to a fixed bipartition,
namely, the bipartitions AjBC, BjAC, and CjAB (blue, dashed
lines). Their convex hull (thick blue, dashed line) is the set of
biseparable states. Each of the three sets is contained within the
set of states that are PPT with respect to the corresponding
bipartition (red, solid lines). Their convex hull forms the set of
PPT mixtures (thick red, solid line).
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so it can be used to gain new insights into already per-
formed experiments.

But before proceeding to the examples, let us note three
more facts. First, in the formulation no dimension of the
Hilbert space is fixed. Consequently, our approach is valid
for any dimension, and combined with the methods of
Ref. [19] it can be directly used to study multipartite
entanglement in continuous-variable or hybrid systems
[20]. For continuous variables, it can be employed com-
plementary to the methods of Ref. [21].

Second, our approach can also be used to quantify
genuine multipartite entanglement. If in Eq. (4) the trace
normalization TrðWÞ ¼ 1 is replaced by 0 � PM � 1 and
0 � QM � 1, the negative witness expectation value is a
multipartite entanglement monotone, since it obeys the
following properties. (i) It vanishes on all biseparable
states. (ii) It is convex. (iii) The quantity does not increase
under protocols that consist of local operations of each
party and classical communication between them. (iv) It is
invariant under local basis changes. While most of these
properties are straightforward to see—in particular, (iv) is
implied by (iii)—the proof of property (iii) is more tech-
nical [22]. Note that, in the bipartite case, this monotone
becomes the negativity [23].

Third, as mentioned before, there are other possible
choices of supersets for the set of separable states, e.g.,
the set of states that have a symmetric extension on a larger
Hilbert space [12,22].

Numerical examples.—We test the criterion of Eq. (4)
for important pure three- and four-qubit states prepared in
many experiments [24], by using the white noise toler-
ance as a figure of merit. It is given by the maximal
amount ptol of white noise for which the state %ðptolÞ ¼
ð1� ptolÞjc ihc j þ ptol1=2

n is still detected as entangled
[25]. Table I shows the white noise tolerances of
our criterion, compared with the most robust criteria
so far.

Strikingly, the tolerances of the witnesses obtained by
our SDP are significantly higher than previous ones. For
the Greenberger-Horne-Zeilinger (GHZ) and theW state of

three qubits and the GHZ and the linear cluster state of four
qubits, we even obtain the best white noise tolerance
possible, since we are able to show that for a larger amount
of white noise the state becomes biseparable [22]. This
shows that our criterion is indeed optimal for these cases.
To show that the criterion of Eq. (4) works well for a

restricted set of observables, we consider the four-qubit
Dicke state with two excitations jD2;4i [24]. For this state,
the SDP yields a witness WD [22] that consists of the
observables O ¼ fX�4; Y�4; Z�4; X1X2Y3Y4; X1X2Z3Z4;
Y1Y2Z3Z4g, their distinct permutations, and other observ-
ables that can be measured in the same run. For example, a
local measurement of X1X2X3X4 yields knowledge of the
expectation value of X1X213X4. The SDP finds a witness
consisting of O1 ¼ X�4, O2 ¼ Y�4, and observables ob-
tained by replacing some Pauli operators by the identity.
Already with these observables, the white noise tolerance

is pð2Þ
tol � 0:294 95. We can proceed in this way and use

additional observables Oi from the set O—including their
permutations and observables obtained by replacing Pauli
operators by 1—to produce strictly stronger witnesses

WðiÞ
D . Their white noise tolerances pðiÞ

tol are pð3Þ
tol �0:38379,

pð4Þ
tol � 0:383 83, pð5Þ

tol � 0:452 00, and finally pð6Þ
tol �

0:539 14 as in Table I, since WD ¼ Wð6Þ
D .

Third, we compute a lower bound on the volume of
genuinely multipartite entangled states. We created
samples of 104 random mixed three-qubit states uniformly
distributed with respect to the Hilbert-Schmidt distance (or
the Bures distance) and check whether they are genuinely
multipartite entangled. 6.28% (Bures: 10.32%) were de-
tected by fully decomposable and 0.44% (Bures: 1.06%) by
fully PPT witnesses. As expected, fully PPT witnesses
detect fewer states.
While the problem can still be tackled numerically for

six or seven qubits, in recent experiments up to 14 ions
have been coherently manipulated [29]. Therefore, we
study analytical witnesses which can be generalized to an
arbitrary number of qubits in the following.
Analytical results.—A fully decomposable witness for

the four-qubit linear cluster state jCl4i [24] that is obtained
by the SDP of Eq. (4) is given by

WCl4 ¼ 1
21� jCl4ihCl4j � 1

8ð1� g1Þð1� g4Þ; (5)

where g1 ¼ Z1Z21314 and g4 ¼ 1112Z3Z4 are two of the
generators of the cluster state’s so-called stabilizer group.
This witness detects more states than the usual projector
witness Wproj ¼ 1

21� jClnihClnj, since WCl4 is obtained

from Wproj by subtracting a positive operator Pþ. For n
qubits, the generators are, after a local basis change, g1 ¼
X1Z2, gi ¼ Zi�1XiZiþ1 for 1< i < n, and gn ¼ Zn�1Xn.
Then, the n-qubit linear cluster state is defined by
jClnihClnj ¼ 2�n

Q
n
i¼1ð1þ giÞ. The construction of the

four-qubit cluster state witness can be generalized to an
arbitrary number of qubits [22]. For seven qubits, e.g., a
witness is given by

TABLE I. White noise tolerances of the fully decomposable
witnesses obtained by the SDP of Eq. (4) compared with the
corresponding tolerances of the most robust criteria known so
far. For the states marked by ?, we verified that adding more
white noise than what is tolerated by Eq. (4) results in a
biseparable state, so the values are optimal.

White noise tolerances ptol

State Fully decomposable Before

jGHZ3i? 0.571 0.571 [7]

jGHZ4i? 0.533 0.533 [7]

jW3i? 0.521 0.421 [7]

jW4i 0.526 0.444 [7]

jCl4i? 0.615 0.533 [26]

jD2;4i 0.539 0.471 [27]

j�S;4i 0.553 0.317 [28]
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WCl7 ¼ 1
21� jCl7ihCl7j � 1

16½ð1� g1Þð1� g4Þð1� g7Þ
þ ð1þ g1Þð1� g4Þð1� g7Þ
þ ð1� g1Þð1þ g4Þð1� g7Þ
þ ð1� g1Þð1� g4Þð1þ g7Þ�: (6)

For the case of n qubits, the white noise tolerance is

ptol ¼ ½1� 2�nþ1 þ ðkþ 1Þ2�k��1 ������!n!1
1; (7)

where k ¼ bnþ2
3 c. This result is remarkable for several

reasons. First, WCln is the first example of a witness for
genuine multipartite entanglement so far whose white
noise tolerance converges to one for an increasing number
of qubits. Thus, the volume of the largest ball inside the
biseparable states around the totally mixed state ap-
proaches zero. A similar scaling behavior of the entangle-
ment in the cluster state has been found in Ref. [30]. Note
that, however, they considered full separability and not
genuine multipartite entanglement. For full separability,
this scaling behavior is not surprising, since it is known
that the largest ball of fully separable states around the
totally mixed states shrinks with an increasing particle
number [31]. Moreover, the white noise tolerance of
Eq. (7) corresponds to a required fidelity Freq � 1� ptol �
k2�k for large n and therefore decreases exponentially fast
with growing n. In contrast, the fidelity needed to detect
entanglement by using Wproj equals one-half, independent

of the particle number. Interestingly, this exponential im-
provement comes with very low experimental costs, since
the additional term Pþ can be measured with only one
experimental setting. Finally, note that our construction
induces a similar construction for the 2D cluster state.

Discussion.—In this Letter, we presented an easily im-
plementable criterion for genuine multipartite entangle-
ment. We demonstrated its high robustness, connected it
to entanglement measures, and provided powerful wit-
nesses for an arbitrary number of qubits.

Because of its versatility, the criterion can be used to
characterize the entanglement in various physical systems,
e.g., in ground states of spin models undergoing a quantum
phase transition. Moreover, it is a promising tool to study
multipartite entanglement in continuous-variable systems.
Finally, we believe that, as an easy-to-use scheme, it will be
valuable for the analysis of experimental data that do not
constitute a whole tomography.
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