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We present an efficient strategy for controlling a vast range of nonintegrable quantum many-body one-

dimensional systems that can be merged with state-of-the-art tensor network simulation methods such as

the density matrix renormalization group. To demonstrate its potential, we employ it to solve a major issue

in current optical-lattice physics with ultracold atoms: we show how to reduce by about 2 orders of

magnitude the time needed to bring a superfluid gas into a Mott insulator state, while suppressing defects

by more than 1 order of magnitude as compared to current experiments [T. Stöferle et al., Phys. Rev. Lett.

92, 130403 (2004)]. Finally, we show that the optimal pulse is robust against atom number fluctuations.
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Classical control theory has played a major role in the
development of present-day technologies [1]. Likewise,
recently developed quantum optimal control methods
[2–4] can be applied to emerging quantum technologies,
e.g., quantum information processing—until now, at the
level of a few qubits [5–7]. However, such methods en-
counter severe limits when applied to many-body quantum
systems: due to the complexity of simulating the latter,
existing quantum control algorithms (requiring many iter-
ations to converge) usually fail to yield a desired final state
within an acceptable computational time. A paradigmatic
application of control of a many-body quantum system is
the control of the dynamics of a quantum phase transition.
The process of crossing a phase transition in an optimal
way has been studied for decades for classical systems.
Only recently it has been recast in the quantum domain,
attracting a lot of attention (see, e.g., [8] and references
therein) since, for instance, it has implications for adiabatic
quantum computation and quantum annealing [9]. A tran-
sition between different phases is usually performed by
‘‘slowly’’ (adiabatically) sweeping an external control pa-
rameter across the critical point, allowing for a transfor-
mation from the initial to the final system ground state with
sufficiently high probability. However, at the critical point
in the thermodynamical limit a perfect adiabatic process is
forbidden in finite time [10]. Thus, the resulting final state
(for finite-time transformations) is characterized by some
residual excitation energy, corresponding to the formation
of topological defects within finite-size domains. The
Kibble-Zurek theory has been shown to yield good esti-
mates of the density of defects or of the residual energy
[8,11]. The importance of these estimates in the quantum
domain is underscored by the fact that, apart from very
specific cases where analytical solutions are available,
theoretical investigations must rely on heavy numerical

simulations due to the exponential growth of the Hilbert
space with the system size and to the diverging entangle-
ment at the critical point [12]. Nevertheless, it is possible to
perform one-dimensional simulations of the dynamics by
means of tensor-network-based techniques such as the
time-dependent density matrix renormalization group
(tDMRG) [13].
The basic underlying idea of classical control is to pick a

specific path in parameter space to perform a specific
task. This is formally a cost functional extremization that
depends on the state of the system and is attained by
varying some external control parameters. In a quantum-
mechanical context, a big advantage is that the goal can be
reached via interference of many different paths in parame-
ter space, rather than just one. In few-body quantum sys-
tems, it has been shown that optimal control finds optimal
paths in the parameter space that result in constructive
interference of the system’s classical trajectories toward a
given goal [4]. Indeed, present optimal control strategies
demonstrated an impressive control of quantum systems,
ranging from optimization of NMR pulses [7] to atomic
[14] and superconducting qubits [5], as well as the crossing
of a quantum phase transition in the analytically solvable
quantum Ising model [15]. However, despite their effec-
tiveness, they cannot be efficiently applied to systems that
require tensor network methods for their simulation.
This Letter marks a step further—it provides for the first

time a means to control the evolution of a nonintegrable
many-body quantum system, resulting in the optimization
of a given figure of merit. This is done by introducing a
strategy to integrate optimal control with tDMRG simula-
tions of the many-body quantum dynamics.
Tensor-network-simulations.—Tensor network methods

are based on the assumption that it is possible to describe
approximately a wide class of states with a simple tensor
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structure. In particular the DMRG describes ground state
static properties of one-dimensional systems by means of a
matrix product state (MPS) [16]. The main characteristic of
a MPS is that the resources needed to describe a given
system depend only polynomially on the system size N,
due to the introduction of an ancillary dimension m that
determines the precision of the approximation. Since an
exact description requires exponentially increasing resour-
ces with the number of components N, the tensor network
approach results in an exponential gain in resources. Given
a system Hamiltonian, the best possible approximated
description of the system ground state—within the MPS
at fixed m—is determined by means of an efficient energy
minimization. With some slight modification, discretizing
the time T ¼ nsteps�t and performing a Trotter expansion,

the algorithm can be adapted to follow a state time evolu-
tion, the so-called tDMRG [13]. The tDMRG is a very
powerful numerical method for efficiently numerically
simulating the time evolution of one-dimensional many-
body quantum systems. The class of states and of time
evolutions that can be efficiently described with a small
error are determined by the presence of entanglement
between the different system components [12]. Here, we
will use the tDMRG for the simulation of cold atoms in
time-dependent optical lattices, which we feed into the
chopped random basis (CRAB) optimization algorithm as
described below.

CRAB method.—The general scenario of an optimal
control problem can be stated as follows: given a system
described by a Hamiltonian H depending on some control
parameters cjðtÞ with j ¼ 1; . . . ; NC, the goal is to find the

cj’s time dependence (pulse shape) that extremizes a given

figure of merit F , for instance, the final system energy,
state fidelity, or entanglement. We then start with an initial
pulse guess c0j ðtÞ and look for the best correction that has a
simple expression in a given functional basis. As an ex-
plicative example, here we focus on the case where the
correction is of the form cjðtÞ ¼ c0j ðtÞfjðtÞ, and the func-

tions fjðtÞ can be simply expressed in a truncated Fourier

space, depending on the expansion coefficients ~aj ¼ akj
(k ¼ 1; . . . ;Mj). In particular, in the following, we start

from an initial ansatz, e.g., an exponential or linear ramp,
and we introduce a correction of the form

fðtÞ ¼ 1

N

�
1þX

k

Ak sinð�ktÞ þ Bk cosð�ktÞ
�
: (1)

Here, k ¼ 1; . . . ;M, �k ¼ 2�kð1þ rkÞ=T are ‘‘rando-
mized’’ Fourier harmonics, T is the total time evolution,
rk 2 ½0:1� are random numbers with a flat distribution, and
N is a normalization constant to keep the initial and final
control pulse values fixed. The optimization problem is
then reformulated as the extremization of a multivariable
function F ðfAkg; fBkg; f�kÞg, which can be numerically
approached with a suitable method, e.g., steepest descent
or conjugate gradient [17]. When using CRAB together

with tDMRG, computing the gradient of F is extremely
resource consuming, if not impossible. Thus we resort to a
direct search method like the Nelder-Mead or Simplex
methods [17]. They are based on the construction of a
polytope defined by some initial set of points in the space
of parameters that ‘‘rolls down the hill’’ following prede-
fined rules until reaching a (possibly local) minimum (see
Fig. 1). Because of the fact that direct search methods are
based on many independent evaluations of the function to
be minimized, they can be efficiently implemented to-
gether with tDMRG simulations (and possibly performed
in parallel). We stress that the functional dependency of the
correction presented here [Eq. (1)] is one possible ap-
proach: different strategies might be explored. Indeed,
making a given choice confines the search of the optimal
driving field in a subspace of the whole space of functions
and the results might depend on this choice. On the other
hand, this approach simplifies the optimization problem
that would be otherwise computationally unfeasible when
tDMRG simulations are needed. As shown below, the
described choice allows us to perform a successful
optimization.
Optical-lattice system.—Very recently, the experimental

and theoretical analysis of the dynamics of cold atoms in
optical lattices has experienced a fast development, after
the experimental demonstration of coherent manipulation
of ultracold atoms in the seminal work of Ref. [18], where
a Bose-Einstein condensate is first loaded into a single
trap, and then a periodic lattice potential is slowly ramped
up, inducing a quantum phase transition to aMott insulator.
This is the enabling step for a wide range of experiments,
from transport or spectroscopy to quantum information
processing [19]. In most of these applications, it is essential
to achieve the lowest possible number of defects in the final
state, that is, to reach exactly a final state with fixed number
of atoms per site, e.g., unit filling. Up to now, this has been
pursued by limiting the process speed—the superfluid-
Mott insulator transition has been performed in about a
hundred milliseconds, with a density of defects typically of
the order of 10% [20].
Cold atoms in an optical lattice can be described by the

Bose-Hubbard model defined by the Hamiltonian [19,21]

FIG. 1 (color online). (a) An initial guess pulse c0ðtÞ is used as
a starting point. (b) The function F ð ~aÞ for the case ~a ¼ fa1; a2g
and the initial polytope (white triangle) are defined and moved
‘‘downhill’’ [darker gray (red) triangles] until convergence is
reached. (c) The final point is recast as the optimal pulse cðtÞ.
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:

(2)

The first term on the right-hand side of Eq. (2) describes the
tunneling of bosons between neighboring sites with rate J;
� is the curvature of the external trapping potential, and

nj ¼ byj bj is the density operator with bosonic creation

(annihilation) operators byj (bj) at site j ¼ 1; . . . ; N. The

last term is the on-site contact interaction with energy U.
The system parameters U and J can be expressed as a
function of the optical-lattice depth V (we set @ ¼ 1 from
now on) [19]. As sketched in Fig. 2, the system undergoes a
quantum phase transition from a superfluid phase to a Mott
insulator as a function of the ratio J=U. In a homogeneous
one-dimensional system, the quantum phase transition is
expected to occur at Jc=U ’ 0:083, where (upon decreas-
ing the ratio J=U) the ground state wave function drasti-
cally changes from a Fermi-Thomas distribution with high
fluctuations in the number of particles per site to a simple
product of local Fock states with no fluctuations in the
number of atoms per site [19]. In the presence of an
external trapping potential on top of the optical lattice,
the phase diagram is more complex: the two phases coex-
ists in different trap regions and typical ‘‘cake’’ structures
are formed [22].

Results.—Following previous numerical studies [23]
that modeled the experiment [24], and supported by strong
evidence of agreement between numerical simulations and
experimental results [25,26], we studied both the ideal
homogeneous system (� ¼ 0) and the experimental setup
of [25] where the trapping potential is present. We applied
the CRAB optimization to the preparation of a Mott insu-
lator with ultracold atoms in an optical lattice; that is, we
optimized the ratio J=UðtÞ that drives the superfluid-Mott

insulator transition. The resulting optimal ramp shape
drives the system into a final Mott insulator state with a
density of defects below half a percent in a total time of the
order of a few milliseconds, amounting to a drastic im-
provement in the process time and in the quality of the final
state—by about 2 orders of magnitude and by more than 1,
respectively.
We consider a starting value of the lattice depth

Vð0Þ ¼ 2Er corresponding to J=Uð0Þ � 0:52, since the
description of the experimental system by Eq. (2) breaks
down for Vð0Þ & 2Er [21]. However, the initial lattice
switching on (V ¼ 0 ! 2Er) can be performed very
quickly without exciting the system (few milliseconds at
most) [27]. We optimize the ramp to obtain the minimal
residual energy per site �E=N ¼ ðEðTÞ � EGÞ=N (where
EG is the exact final ground state energy). In all simulations
performed we set the total time T ¼ 50@=U ’ 3:01 ms and
the final lattice depth VðTÞ=Er ¼ 22� 2:4� 10�3J=U,
deep inside the Mott insulator phase. Unless explicitly
stated, we set the average occupation to one (

P
ihnii ¼ N).

In all DMRG simulations, we exploited the conservation of
the number of particles and used m ¼ 20; . . . ; 100, �t ¼
10�2–10�3. We computed the final density of defects � ¼
1
N

P
ijhnii � 1j: when it reached a given threshold

�c ¼ 10�3, the optimization was halted. In Fig. 3 we report
a typical result of the optimization process: the initial guess
and final optimal ramp for the system in the presence of the
confining trap are shown for the parameter values corre-
sponding to the experiment [24], for a system size N ¼ 30.
As can be clearly seen, the pulse is modulated with respect
to the initial exponential guess and no high frequencies are
present, reflecting the constraint introduced by the CRAB
optimization. In the inset we display the final occupation
numbers and the corresponding fluctuations, for the initial
exponential ramp and the optimal pulse in the case

FIG. 2 (color online). Scheme of the Mott-superfluid transition
in the homogeneous system for average occupation number
hni ¼ 1: increasing the lattice depth V (black line) the atom’s
superfluid wave functions (upper) localize in the wells (lower).
If the transition is not adiabatic—or optimized—defects appear
(here represented by a hole and a doubly occupied site).
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FIG. 3 (color online). Initial guess (dashed black line) and
optimal ramp (solid red line) VðtÞ for the Bose-Hubbard model
in the presence of the trap with N ¼ 30 sites, total time evolution
T ’ 3 ms. Inset: Populations hnii (empty black symbols) and
fluctuations h�n2i i (full red symbols) at time t ¼ T for the
exponential initial guess (circles) and optimal ramp (squares)
for N ¼ 10.
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N ¼ 10. The figure clearly demonstrates the convergence
to a Mott insulator in the latter case as fluctuations are
drastically reduced and the occupation is exactly one for
every site.

Finally, in Fig. 4 we plot the optimized density of defects
� as a function of the system size (up to N ¼ 40) for the
homogeneous and for the trapped system, demonstrating
an improvement with respect to the initial guess by 1 (2)
orders of magnitudes. Indeed, the exponential guess—like
other guesses: linear, random, and a pulse optimized for a
smaller system (N ¼ 8 sites)—gave residual density of
defects of the order of 10% [gray (red) region in Fig. 4].
To check the experimental feasibility of our findings, we
studied the stability of the optimal evolutions under differ-
ent sources of error and experimental uncertainties, like
atom number fluctuations. The inset of Fig. 4 shows the
final density of defects when an optimal pulse computed
for a given system size is applied to a different system size
(keeping the average filling constant). As can be seen, the
optimization works also for system size fluctuations of up
to 20%: the final density of defects is of the same order.
This robustness is crucial as the experimental realization of
these systems is performed in parallel on many different
one-dimensional tubes with different numbers of atoms
[19]. We also checked the cases of different filling and of
pulse distortion obtaining similar results (data not shown).

Outlook.—In conclusion, we would like to mention that
the CRAB optimization strategy introduced here can in
principle be applied also to open quantum many-body
systems, e.g., by means of recently introduced numerical
techniques [28]. Perhaps an even more stimulating per-
spective would be that of implementing it with a quantum
system in place of the tDMRG classical simulator,

i.e., performing a CRAB-based closed-loop optimization
[29]. The optimization might be performed during the
experimental repetitions of the measurement processes,
thus adding a small overhead to the experimental complex-
ity. This would extend the applicability of the CRAB
method to the optimization of quantum phenomena that
are completely out of reach for simulation on classical
computers, and represent a major design tool for future
quantum technologies.
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FIG. 4 (color online). Residual defect density � for N ¼
10; 20; 30; 40, T ’ 3 ms, �c ¼ 0:001 for the homogeneous sys-
tem (green squares) and in the presence of the trap (gray circles).
The gray (red) region highlights the typical � for different initial
ramp shapes (see text). Inset: Final � computed applying the
pulse optimized for system size N ¼ 20 to different system sizes
�N ¼ �4; . . . ; 4 (at constant filling). The results are almost
independent from the truncation error for m> 50.
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