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A wide spectrum of extreme events ranging from traffic jams to floods take place on networks.
Motivated by these, we employ a random walk model for transport and obtain analytical and numerical
results for the extreme events on networks. They reveal an unforeseen, and yet a robust, feature: small
degree nodes of a network are more likely to encounter extreme events than the hubs. Further, we also
study the recurrence time distribution and scaling of the probabilities for extreme events. These results
suggest a revision of design principles and can be used as an input for designing the nodes of a network so

as to smoothly handle extreme events.
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Extreme events (EE) taking place on networks is a fairly
commonplace experience. Traffic jams in roads and other
transportation networks, web servers not responding due to
heavy load of web requests, floods in the network of rivers,
and power blackouts due to tripping of power grids are
some of the common examples of extreme events on net-
works. Such events can be thought of as emergent phe-
nomena due to transport on the networks. As EE lead to
losses ranging from financial and productivity to even life
and property [1], it is important to estimate probabilities
for the occurrence of extreme events and, if possible,
incorporate them to design networks that can handle such
extreme events.

Transport phenomena on the networks have been studied
vigorously in the last several years [2,3] though they were
not focused on the analysis of EE. However, one kind of
extreme event in the form of congestion has been widely
investigated [4]. For instance, a typical approach is to
define rules for (a) generation and transport of traffic on
the network and (b) capacity of the nodes to service them.
Thus, a node will experience congestion when its capacity
to service the incoming ““packets” has been exceeded [5].
In this framework, several results on the stability of net-
works, cascading failures to congestion transition have
been obtained. An extreme event, on the other hand, is
defined as exceedances above a prescribed quantile and is
not necessarily related to the handling capacity of the node
in question. It arises from natural fluctuations in the traffic
passing through a node and not due to constraints imposed
by capacity. Thus, in the rest of this Letter, we discuss
transport on the networks and analyze the probabilities for
the occurrence of EE arising in them without having to
model the dynamical processes or prescribe the capacity at
each of the nodes.

The transport model we adopt is the random walk on
complex networks [3]. Random walk is of fundamental
importance in statistical physics though in real network
settings many variants of random walk could be at work
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[6]. For instance, in the case of road traffic, the flow
typically follows a fixed, often shortest, path from node A
to B and can be loosely termed deterministic. Thus, given
the operational principle of network dynamics, i.e., deter-
ministic or probabilistic or a combination of both, we obtain
the probabilities for the occurrence of EE on the nodes. This
reveals a significant and unexpected result: namely, that the
EE are more prone to occur in a small degree node than in a
hub. This feature is robust against fluctuating traffic and
even upon the application of intelligent routing algorithms
(e.g., shortest paths). This principal result implies that the
design principles for networks should focus on small degree
nodes which are prone to EE. Further, these probability
estimates allow us to design nodes that can have sufficient
capacity to smoothly handle EE of a certain magnitude.
Currently, for univariate time series, there is a widespread
interest on the extreme value statistics and their properties,
in particular, in systems that display long memory [7].
Thus, we place our results in the context of both the random
walks and EE in a network setting.

We consider a connected, undirected, finite network
with N nodes with E edges. The links are described by
an adjacency matrix A whose elements A;; are either 1 or 0
depending on whether i and j are connected by a link or
not, respectively. On this network, we have W noninteract-
ing walkers performing the standard random walk. A ran-
dom walker at time ¢ sitting on the ith node with K; links
can choose to hop to any of the neighboring nodes with
equal probability. Thus, transition probability for going
from the ith to the jth node is A;;/K;. We can write
down a master equation for the n-step transition probability
of a walker starting from node i at time n = 0 to node j at
time n as,

A,
Pyln + 1) = 3" Py(n). (1)
k k

It can be shown that the n-step time-evolution operator
corresponding to this transition, acting on an initial
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distribution, leads to stationary distribution with eigen- 28 W+j Wt )
value unity [3] and it turns out to be F(K) = k1 — pyWHi=k
y [3] ) (K) ;)2A+1k_[zﬂ:+1( A )p( p)
I}LH(}OPI;/‘(”) =Pr;= i, (2) ®)

The existence of stationary distribution is crucial for defin-
ing EE. Physically, the stationary probability in Eq. (2)
implies that more walkers will visit a given node if it has
more links.

Now we can obtain the distribution of random walkers
on a given node. We ask for the probability f(w) that there
are w walkers on a given node having degree K. Since the
random walkers are independent and noninteracting, the
probability of encountering w walkers at a given node is p"
while the rest of the W — w walkers are distributed on all
the other nodes. This turns out to be binomial distribution
given by

s = (W )pra=pyre ©)

Now, the mean and variance for a given node can be
explicitly written down as

_WK _w KK
N=%g W2E<l 2E>' “)

As expected, the mean and variance depends on the degree
of the node for fixed W and E. Note that K/2E < 1 and
hence o = (f)!/2. This reproduces the relation proposed in
Ref. [8], later shown to have limited validity [9].

One natural extension of the result in Eq. (3) is to
account for fluctuations in the number of walkers. We
assume that the total number of walkers is a random
variable uniformly distributed in the interval [W — A,
W + A]. Then the probability of finding w walkers
becomes

- 1 (W+j -
A — J w1 — W+j—w
FAw) jZOzAH( ; )p (1= p)"m, (5)

where W =W — A. The mean and variance of this
distribution can be obtained as

=,
o3 =1+ o)

A2 A 1” (6)
+— .
3IW2 W

3W2 a

In the spirit of extreme value statistics, an extreme event
is one whose probability of occurrence is small, typically
associated with the tail of the probability distribution func-
tion. In the network setting, we will apply the same prin-
ciple to each of the nodes. Based on Egs. (3) and (4), we
will designate an event to be extreme if more than ¢
walkers traverse a given node at any time instant.
The probability for the occurrence of an extreme event
can be obtained as

where |u] is the floor function defined as the largest integer
not greater than u. Notice that necessarily the cutoff g will
have to depend on the node (or rather, the traffic flowing
through the node) in question. Applying uniform threshold
independent of the node (¢ = const) will lead to some
nodes always experiencing an extreme event while
some others never encountering any extreme event at all.
Hence we define the threshold for extreme event to be
q = {f) + mo, where m is any real number.

It does not seem possible to write the summation in
Eq. (8) in closed form. However, for the special case
when A = 0, Eq. (8) simplifies to

w
FK)= Y f=1(gl+1Lw—1lg).

k=|ql+1

where 7,(,,.) is the regularized incomplete beta function
[10]. For a given choice of network parameter E and
number of walkers W, the extreme event probability at
any node depends only on its degree. In Fig. 1 we show
F(K) as a function of degree K superimposed on the results
obtained from random walk simulations. The agreement
between Eq. (8) and the simulated results is quite good.
Further, each point in the figure represents an average over
all the nodes with the same degree. We emphasize that the
oscillations seen in Fig. 1 are inherent in the analytical and
numerical results and not due to insufficient ensemble
averaging.
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FIG. 1 (color online). Probability for the occurrence of ex-
treme events as a function of degree K with fluctuations A in the
total number of walkers on semilog plot. The threshold for EE is
q = (f) + 40. The solid lines are from the analytical result in
Eq. (8). All the simulations shown in this Letter are obtained
with a scale-free network (degree exponent y = 2.2) with
N = 5000 nodes, E = 19815 vertices, and W = 2E walkers
averaged over 100 realizations with randomly chosen initial
conditions.
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An important feature of this result is that the nodes with
smaller degree (K < 20) reveal, on an average, a higher
probability for the occurrence of EE as compared to the
nodes with higher degree, say, K > 100. By careful choice
of parameters, the probability F(K) can differ by as much
as an order of magnitude. This runs contrary to a naive
expectation that higher degree nodes garner more traffic
and hence are more prone to EE. While the former con-
tention is still true in the random walk model we employ,
the results here indicate that the latter one is not generally
correct. As shown in Figs. 1(b) and 1(c), this feature is
robust even when the number of walkers becomes a fluc-
tuating quantity. We note that Eqgs. (8) and (9) for the
extreme event probability do not depend on the topology
of the network. Even though the simulation results are
shown for scale-free graphs, it holds good for other types
of graphs (not shown here) with random and small world
topologies. However, the difference in probability for EE
between hubs and smaller degree nodes is not pronounced
in the case of random graphs.

The threshold ¢ that defines an event to be extreme
depends on the traffic flowing through a given node. The
choice ¢ = (f) + mo is arbitrary. Now, we show that the
extreme event probability in Eq. (9) scales with the choice
of threshold ¢ or, equivalently, m. In the Fig. 2(a) we show
F,,(K) for various choices of m in log-log scale. Clearly, as
m decreases, ignoring the local fluctuations, the curves
tend to become horizontal. Physically, this can be under-
stood as follows: ¢ — O implies that the threshold for EE
decreases and this leads to larger number of EE and hence a
higher probability of occurrence. In the limiting case of
g = 0, F(K) = 1 for all nodes and all the events would be
extreme. The graph in Fig. 2(a) suggests that it might be
scaling with respect to g or m. Starting from Eq. (9),
we were not able to determine the scaling analytically.
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FIG. 2 (color online). Probability for occurrence of extreme
events for several values of threshold ¢ = (f) + mo. (a) shows
the extreme event probabilities in log-log plot obtained from
simulations with A = 0. (b) shows scaling EE probabilities. S,
represents the reference slope with m = 2. The threshold applied
for curves from top to bottom are m = 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,
and 5.0.

Hence, we empirically show that the following scaling
relation holds for the probability of EE,

Fm(K)

2= = constant, (10)

where F,(K) represents extreme event probability for
threshold value g with parameter m. In this, S,, is the slope
of the curves F,,(K) in the Fig. 2(a). Using Eq. (10) on the
simulated data for A = 0, we find that all the curves for the
probability of EE, shown in Fig. 2(b), collapse into one
curve to a good approximation.

In the study of EE, distribution of their return intervals is
an important quantity of interest. This carries the signature
of the temporal correlations among the EE and is useful for
hazard estimation in many areas. We focus on the return
intervals for a given node of the network. Since the random
walkers are noninteracting, the events on the nodes are
uncorrelated. Then, the recurrence time distribution is
given by P(7) = e¢~7/", where the mean recurrence time
is () = 1/F(K). In the inset of Fig. 3, we show P(7)
obtained from simulations for three nodes with different
degrees. In semilog plot, they reveal an excellent agree-
ment with the analytical distribution P(7) (shown as a solid
line). The main graph of Fig. 3 shows the mean recurrence
time (7), the only parameter that characterizes the recur-
rence distribution, as a function of K and it agrees with the
analytical result.

As pointed out before, many types of flow on the net-
work, such as the information packets flowing through the
network of routers and traffic on roads, use more intelligent
routing algorithms [11] rather than a random walk. To
check the robustness of results in Egs. (8) and (9), we
implemented the random walk simulation with the con-
straint that the traffic from node i to j takes the shortest
path (SP) on the network. If multiple shortest paths are
available to go from node i to j, the algorithm chooses any
one of them with equal probability. Thus, in this setting,
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FIG. 3 (color online). The inset shows the recurrence time
distribution for extreme events from simulations (symbols)
with A = 0 for nodes with 5, 12, and 19 links. The solid line
is the analytical distribution. The main figure shows the mean
recurrence time as a function of degree K.
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FIG. 4 (color online). ~Extreme event probability Fy, for A = 0
with shortest path algorithm implemented for random walkers.
The data are plotted in two different ways. (a) F,,(b) as a
function of betweenness centrality, (b) F,,(K) as a function of
degree K of the node. Nodes with same value of K can have
different betweenness centrality. In (b), in order to reduce the
clutter, for every value of K, the extreme event probability for
the node with largest (b,,,, solid circles) and least value (b,
solid square) of b is plotted.

for every random choice of source-destination pair the
paths are laid out by the algorithm and randomness arises
only when multiplicity of SPs are available. Thus, this can
be thought of as a walk with a large deterministic compo-
nent. The simulation results with the SP algorithm [12]
shown in Fig. 4 are qualitatively similar to the trend dis-
played in Fig. 1. In this scenario of predominantly deter-
ministic dynamics, it is conceivable that the degree of a
node does not determine the flux passing through it. This
role is played by the centrality of the node with respect to
the SPs in the network, quantified by the betweenness
centrality b of a given node [13]. Based on this qualitative
argument, the results in Fig. 4 can be understood if we
replace Eq. (2) with p = Bb/B where B is the normaliza-
tion factor that depends on the sum of betweenness central-
ity of all the nodes on the network. From the numerical
simulations, we obtain 8 = 0.94. Using this p in Eq. (2),
we can go through the same arguments as before and
analytically obtain (f), o, ¢, and the probability F,,(b)
for occurrence of EE. In Fig. 4(a), F,(b) is shown as solid
curve. In Fig. 4(b), the same data for F p(b) are shown as a
function of K for easier comparison with Fig. 1. Thus, even
with the SP algorithm thrown in, the EE probabilities are
higher for the nodes with smaller degree (K < 20) than for
the ones with larger degree (K > 100).

Finally, we comment on how these results can be applied
as a basis to design nodes of a network. The central result
in this Letter in Eq. (8) allows us to a priori estimate the EE
probabilities. These depend on whether operating principle
of dynamics is deterministic or probabilistic. If the idea is
to avoid congestion or other problems arising due to EE of
certain magnitude, then these estimates can be used as an
input to the design principles for the nodes. For instance,

for the road traffic that operates broadly on the shortest
path principle the probabilities can be used as a basis to
provision for higher capacity to nodes that will avoid
bottlenecks arising from EE of a given magnitude.

In scale-free networks, small degree nodes form the bulk
and are more prone to encounter EE. But network design
principles and practice generally focus on the hubs. Such
evolved practices might work best most of the time. Our
work suggests that they might fail in the context of extreme
events and hence a revised approach is necessary. A careful
design for the capacity of small degree nodes is important
as well. It must be emphasized that incorporating such EE
estimates in design principles will only help in better
preparedness to meet the expected EE. The EE discussed
here being due to inherent fluctuations will nevertheless
take place and cannot be avoided.

The simulations were carried out on computer clusters at
PRL, Ahmedabad and IISER, Pune.
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