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Axial rotational diffusion of rodlike polymers is important in processes such as microtubule filament

sliding and flagella beating. By imaging the motion of small kinks along the backbone of chains of

DNA-linked colloids, we produce a direct and systematic measurement of axial rotational diffusivity of

rods both in bulk solution and near a wall. The measured diffusivities decrease linearly with the chain

length, irrespective of the distance from a wall, in agreement with slender-body hydrodynamics theory.

Moreover, the presence of small kinks does not affect the chain’s axial diffusivity. Our system and

measurements provide insights into fundamental axial diffusion processes of slender objects, which

encompass a wide range of entities including biological filaments and linear polymer chains.

DOI: 10.1103/PhysRevLett.106.188302 PACS numbers: 82.70.Dd, 05.40.Jc, 82.70.Kj

Unlike spheres, highly anisotropic objects diffuse in a
complex manner, particularly so if they are flexible. The
combined effects of shape anisotropy, internal degrees of
freedom, and environment greatly influence their behavior.
Some of these dynamical effects are now being understood,
like the strong coupling between translational diffusion
and transverse rotation (usually simply termed rotation)
[1] and enhanced transverse rotational diffusion of slightly
flexible rods in crowded environments [2]. Despite its
crucial importance in structuring of liquid crystals [3]
and in biological processes such as lipid bilayer dynamics
[4] and microtubule sliding [5,6], rotational diffusion
around the long axis (axial rotation) of rodlike molecules
is still poorly characterized and not understood. Direct
measurement of axial rotation is challenging because
most of the electro-optical properties of cylindrical macro-
molecules are also axisymmetric [7]. NMR relaxation [4],
fluorescence anisotropy decay [8], and 3D tracking [6,9]
have been used to measure the axial rotation of rodlike
molecules. The first two techniques measure ensemble
average properties and are model-dependent; the third
lacks sufficient accuracy to capture diffusion.

Rodlike colloidal model systems [8–10] can be visual-
ized accurately in real time and space and have tunable
length and stiffness. Their axial symmetry can be broken
simply, as shown by the recent observation of the axial
rotation of a rodlike tetramer along its long axis [10]. Here,
we report a systematic study of axial rotational diffusivity
of slender rods by directly observing with high accuracy
the dynamics of asymmetric DNA-linked magnetic colloi-
dal particles.

Axial rotational diffusion of elongated colloids was
reported in 1827 by Robert Brown in the first report on
thermal (now called Brownian) motion: ‘‘oval particles . . .
their motion consisting in turning usually on their longer
axis, and then often appearing to be flattened’’ [11].
Brown’s observation relied on the slight asymmetry
of arsenic trioxide flakes. The same symmetry breaking

principle is used in our experiments, but the measurements
are quantitative with high precision. The colloidal rods
consist of DNA-grafted paramagnetic particles aligned by
a magnetic field and connected by linker DNA strands
through hybridization [12,13]. Their axial rotation is re-
vealed by the relative motions of small kinks along their
backbones, recorded by video microscopy and analyzed by
image processing. The kinks act as tracers and are suffi-
ciently large for accurate imaging while small enough not
to introduce significant deviation from a perfectly straight
rod in terms of axial rotational diffusivity. We first track the
motion of kinks in 6–54 �m stiff rigid rods undergoing
Brownian motion near a flat substrate to measure their
axial rotational diffusivities. Subsequently, we apply a
magnetic field to control the distance between the
rods and the substrate and measure their axial rotational
diffusivities in bulk. These measured diffusivities match
reasonably well with theoretical predictions [7,14–16],
confirming the validity of the slender-body hydrodynamic
theory.
These rigid rods are made by linking 15-base

oligonucleotides-grafted [13,17] (surface density
5� 104 strand=�m2) paramagnetic polystyrene MyOne
beads (Dynal Biotech, Oslo, Norway) under a uniform
magnetic field [13]. Because of slight nonuniformity in
the distribution of magnetic material inside the particles,
their centers of mass deviate from the straight-line mag-
netic dipole alignment, forming kinks. These kinks are
permanently set by hybridization of linker DNA and par-
ticle surface DNA. When the field is removed, the linked
chains undergo quasi-2D Brownian motion near the
substrate due to confinement by gravity [Figs. 1(a)–1(h)
and 2(a)]. To quantify the stiffness of these chains with
contour length L, their persistence length Lp is measured
to be 50� 7 mm (L=Lp ranging from 5� 10�5 to 10�3)
via Fourier mode analysis of their curvature induced by
thermal fluctuations [13]. The Brownian motion of the
isolated chains is recorded and the axial rotational angle
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�ðsiÞ is analyzed along the chain’s arclength s for each
bond angle i (see [18] for details).

For each chain near the substrate (Fig. 4, bottom-left
inset), we measure the transverse rotational diffusivity and
compare that with theory [1] to confirm that it is not
attached to the substrate (Fig. S1 in [18]). To measure
bulk axial rotational diffusivity, we use a magnetic gradient
field to levitate the rod to �10 �m above the substrate.
The chain diffuses freely along the vertical axis, indicating
that vertical forces are balanced (Fig. 4, top-right inset).

The distribution of bond angles between each pair of
bond vectors (bond number) can be measured [Fig. 3(a)].
For example, the bond angle between the 1st and 2nd
vectors (bond number 1) ranges from �5� to þ5�, while
the bond angles between the 7th and 8th vectors (bond
number 7) range from �15� to þ15�. Since this range of
angles is symmetric about 0�, it indicates that the chain is
making full axial rotations. We can calculate �ðsiÞ from
the kinks whose bond angle exceeds 14� (chosen to mini-
mize error while still providing a statistically sufficient
number of kinks within a chain). For each kink, we com-
pute �ðsiÞ based on the geometry [18] in Fig. 2(b), where
solid lines represent a 3D construct and dashed lines are 2D
projections on the image plane. The final calculated �ðsiÞ
spans between 0 and � [Fig. 3(b)] and has a uniform
distribution [Fig. 3(c)]. This indicates the rods undergo
Brownian motion without any bias in the direction of axial
rotation. Mean-squared displacement (MSD) of �ðsiÞ of
each chosen kink within a rod is plotted against lag time�t

[Fig. 3(d)], i.e., the time elapsed between two measure-
ments. Finally, the axial rotational diffusivities Dar

are calculated by fitting a straight line to the MSD vs
lag time curve using the Einstein relation h½�ðtþ �tÞ �
�ðtÞ�2it ¼ 2Dar�t. Measured diffusivities from different
kinks within each rod are averaged to give the final values
and standard deviations.
The drag coefficient of a rigid rod rotating around its

long axis predicted by slender-body hydrodynamic theory
[5,14,19] is approximately the sum of rotational drag
coefficients of spheres, 8��r3, constituting the rod, i.e.,

DBulk
ar ¼ kBT

4��r2L
; (1)

where kB is Boltzmann constant, T is the absolute tem-
perature, � is the solvent viscosity, r is the bead radius, and
L is the rod length.
To test the slender-body hydrodynamic theory, we mea-

sured the axial rotational diffusivities of rigid rods in bulk
liquid. For each chain, a magnetic field is applied that has a
gradient in the vertical direction but is uniform in the
horizontal plane. The magnetic field in the horizontal plane
induces dipole interactions that keep the chain from rotat-
ing in the image plane [17,19] but does not affect the force
balance in the image plane; therefore, the axial rotational
diffusion of the chain should not be affected. The measured
bulk axial rotational diffusivities of the 6 rigid chains
(green circles in Fig. 4) decrease with increasing chain
length in agreement with slender-body hydrodynamic the-
ory (red line in Fig. 4).
Near a wall, diffusion is slower due to the hydrodynamic

reflections of the rod on the wall, according to [15,20]
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FIG. 2 (color online). Measuring axial rotation of a 15-bead
DNA-linked chain by tracking motions of kinks. (a) Snapshot of
a 15-bead DNA-linked chain undergoing Brownian motion.
(b) Geometry of a kink in 3D configuration and its projection.
(c) Definitions of position coordinates, bond angle �ðsiÞ, and
tangent angle �ðsiÞ ¼ ���ðsiÞ along the chain.

FIG. 1 (color online). Snapshots of a 12-bead rigid
DNA-linked chain under Brownian motion in aqueous solution
near the bottom substrate. The snapshots (a)–(h) are taken
10 seconds apart, and the red dashed circles are highlighting
the kink formed by the 7th, 8th, and 9th beads from the left.
The unusual large size (� � 75�) of this kink is only for
demonstration, whereas the kinks used to measure the axial
rotational diffusivities in this Letter are much smaller than this
(14� � � � 25�).
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DWall
ar ¼ kBT

4��r2
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1� ðr=hÞ2
q

; (2)

where h is the distance between the center of the rod
(beads) and the wall. We measure the axial rotational
diffusivities of rigid rods near a wall by monitoring their
Brownian motion near the glass substrate. Because of the
high density of the paramagnetic beads (� 1800 kg=m3),
chains longer than 6 beads are confined in quasi-2D [13]
and rarely fluctuate out of the focal plane (� 300 nm). The
data (blue circles in Fig. 4) fit reasonably well Eq. (2) with
a power law of �1 (black line in Fig. 4) in a log-log plot.
The right-hand side of Eq. (2) contains the same bulk
diffusivity term as in Eq. (1) and a factor determined by
the height of the rod above the substrate. Because no
systematic deviation of data points from Eq. (2) is observed
when using a single fitting parameter h (h ¼ rþ
0:12 �m), all the chains, long and short, have approxi-
mately the same average height above the substrate. The
value of the height is in agreement with both the height of
the same chains calculated by using their short-axis rota-
tional dynamics data [18] (h ¼ rþ 0:13 �m, Fig. S1, see
[18]) and the height of more flexible chains calculated from
their bending relaxation dynamics (h ¼ rþ 0:15 �m)
[13]. The above evidence strongly suggests the validity
of the previous hydrodynamic dissipation model.
To claim high precision in our axial rotational diffusivity

measurement, we quantify all the major sources of error.
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FIG. 3 (color online). (a) Overlay of bond angles � of all kinks in a 10-bead chain within 800 seconds. (b) Axial rotational angle
�ðtÞ measured from the sixth kink of the same chain in (a). (c) Histogram of the same angles in (b). (d) Typical plot of axial rotational
angular MSD as a function lag time of 10-bead (black circle), 16-bead (blue circles), 30-bead (red circles), and 40-bead (green circles)
chains in bulk.
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FIG. 4 (color online). Axial rotational diffusivities of rigid
rods. Slender-body hydrodynamics theory predictions of axial
rotational diffusivities in bulk (red line) and near a wall (black
line) as a function of rod lengths. Experimental measured axial
rotational diffusivities of rods in bulk (green circles) and near a
wall (blue circles). Error bars are standard deviations of axial
rotational diffusivities obtained from different kinks of the same
chains. (Insets) Schematic illustrations of a chain near a wall
(bottom left, where h is the distance between the center of the
beads and the wall) and a chain elevated by a magnetic field (top
right). Distances are not to scale.
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Error (1) comes from the inaccuracy in determining the
particles’ centers of mass positions. A �4 nm position
error [17] would lead to a 1�–4� error in the �ðsiÞ mea-
surement, depending on the instantaneous position of the
kink. This random error source ultimately leads to a sys-
tematic underestimate of diffusivity by up to 3%. Error (2)
comes from the fact that kinks are ubiquitous in any rod we
measure. Depending on the size of each kink, its effect on
the deviation of the axial rotational drag coefficient of the
whole chain is given by the expression �error ¼ 6��rz2

[21], where z is the particle center of mass deviation from
the long axis. We use the theory for straight rigid rods that
does not take into account the kinks with size 2� �
�ðsiÞ � 20�, which is equivalent to an overestimate of
diffusivity by 2%. Error (3) results from the fact that the
�ðsiÞ angles should vary between �1 and þ1 but are
measured to be only between��=2 and�=2. This effect is
equivalent to confined 1D diffusion between 2 walls [22]
and would saturate the MSD vs time curves [Fig. 3(d)] as
time approaches the axial rotational relaxation time. This
effect could potentially result in an underestimate of dif-
fusivity by Oðt=2�2�Þ. We reduce this underestimation to
less than 1% by limiting the time scale plotted to be less
than 5% of the relaxation time scale. As seen in Fig. 3(d),
the MSD vs time curves are straight within a 0–5 s time
frame (relaxation time 200–1000 s). Error (4) is due to the
assumption that both centers of mass of the particles [left
and right in Fig. 2(b)] next to the kinked particle [top one in
Fig. 2(b)] are on the rotation axis, which might not be true
due to the fact that the kink arrangement within a rod is
random and 3D in nature. Error (5) is caused by occasional
tilting of the rods during recording that results in inaccurate
particle distance measurement. Errors (4) and (5) are neg-
ligible (causing the error in the final measured diffusivity
values to be<1%) since the tilting angle and the degree of
axial mismatch are small enough [17,23]. In summary, the
upper bound of error is �3%, which is unprecedented in
single rod axial rotational diffusivity measurements.

In this Letter, we have demonstrated a convenient and
systematic approach to measure axial rotational diffusiv-
ities of colloidal rigid rods of length 6–54 �m, both in bulk
and near a wall. We have shown that the experimentally
measured diffusivities match reasonably well with slender-
body hydrodynamics theory calculations. Our DNA-linked
colloidal rods, with controllable length, rigidity, and ele-
vation, in conjunction with the imaging and processing
technique, provide an excellent prototype to study semi-
flexible filament axial rotation, twisting, and writhing dy-
namics. This opens the door to investigating polymer
dynamics by using colloidal rods in both bulk and confined
environments.
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