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We apply two-dimensional elasticity theory to viral capsids to develop a framework for calculating

elastic properties of viruses from equilibrium thermal fluctuations of the capsid surface in molecular

dynamics and elastic network model trajectories. We show that the magnitudes of the long wavelength

modes of motion available in a simulation with all atomic degrees of freedom are recapitulated by an

elastic network model. For the mode spectra to match, the elastic network model must be scaled

appropriately by a factor which can be determined from an icosahedrally constrained all-atom simulation.

With this method we calculate the two-dimensional Young’s modulus Y, bending modulus �, and Föppl–

von Kármán number �, for the T ¼ 1 mutant of the Sesbania mosaic virus. The values determined are in

the range of previous theoretical estimates.
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The material properties of capsids is of interest for
nanotechnology design purposes, but also for understand-
ing the morphology of spherical viruses. When examining
the structures of spherical viruses, a range of sizes and
sphericities are observed [1]. The continuum elastic theory
of buckling transitions has been applied to predict the
equilibrium configurations of spherical [2] and nonspher-
ical capsids [3]. In the case of spherical capsids, the
theory predicts a transition from spherical to faceted icosa-
hedral geometries as a function of the dimensionless
Föppl–von Kármán number, � ¼ YR2=�, where Y is the
two-dimensional Young’s modulus, � is the bending modu-
lus, and R is the shell radius. The buckling transition has
been proposed as a maturation mechanism for the
bacteriophage HK97 (T ¼ 7) during which the capsid
swells and changes from a spherical to a faceted icosahe-
dral shape [4].

Experimental studies have also been directed toward the
assessment of mechanical properties of capsids, primarily
using the technique of atomic force microscopy (AFM).
The first AFM studies involving viruses measured the
forces related to packing and unpacking of DNA into
bacteriophage capsids and the internal pressure inside a
capsid [5–7]. More recent studies, using AFM, have per-
formed nanoindentation on both empty and RNA filled
capsids to probe the stress-strain behavior and measured
a linear spring constant [8–10]. These studies have in-
creased our understanding of the material properties of
capsids and provided estimates of the three-dimensional
Young’s modulus E, but have not determined the two-
dimensional parameters.

In the present work, we begin by deriving a relationship
between measurable surface properties (spherical har-
monic expansion coefficients) and the elastic properties
of interest (Y and �). The forces acting on a spherical shell
due to in-plane and radial deformations have been de-
scribed previously [11]. We take as our starting point a

simplification of these force equations by considering only
radial deformations, shown in Eqs. (1) and (2)

F� ¼ ð�þ�ÞD�

�
2�

R

�
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where F� and N are the lateral and normal forces, respec-
tively, � and � are the Lam�e constants, � is a normal
deformation, L is the operator given by L ¼
D�D

�D�D
� þ 2

R2 D�D
�, D� and D� are covariant

and contravariant differential operators, respectively, and
the indices � and � take on values of 1 or 2 to indicate the
lateral direction on the surface. When we calculate the
deformations of the viral capsid surface during our simu-
lations, we do so by considering only the normal displace-
ments (�) on a fixed grid (in the polar and azimuthal
directions). In this framework, the three-dimensional mo-
tions of atoms are projected onto the one-dimensional
radial displacement of an element. By considering only
radial displacements we are making an approximation to
the full 3D forces equations, which simplifies the mathe-
matical manipulations. Furthermore, we believe that the
center of mass displacements of surface elements will be
dominated by the radial displacements (we validate this
assertion later in the Letter). When we compute the dis-
placement function �ð�;	; tÞ at a given moment in time,
we do so by considering the difference between the instan-
taneous surface rð�;	; tÞ and the ensemble averaged sur-
face hrð�;	Þi. � can be decomposed using a spherical
harmonic basis set

�ð�;	; tÞ � rð�;	; tÞ � hrð�;	Þi

¼ Xlmax

l¼0

Xþl

m¼�l

almYlmð�;	Þ: (3)
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Ylm are spherical harmonics, which are eigenfunctions of
the operators in Eqs. (1) and (2), allowing for the forces to
be written in terms of the eigenvalues [11],

F1

F2

N

2
64

3
75 ¼ ��d; (4)

where

�11 ¼ �22 ¼ 2ð�þ�Þ
R2

;

�33 ¼ 4ð�þ�Þ
R2

þ �
lðl� 1Þðlþ 1Þðlþ 2Þ

R4
;

�i�j ¼ 0 and di¼1;2;3 ¼ �:

The elastic energy density is given by ~E ¼ 1
2d ��d. The

total elastic energy E of the surface can then be obtained by
integration over the surface

E ¼ 1
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where b � �þ�, � is the solid angle and * indicates the
complex conjugate. The orthogonality of the spherical
harmonics and the definition jâlj2 � Pþl

m¼�l alma
�
lm allow

the total elastic energy to be written in simplified form

E ¼ 1
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X
l

�
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R2

�
jâlj2: (6)

Given the quadratic form of the energy, the ensemble
averages of jâlj2 can be calculated and a relationship is
obtained which contains only measurable surface proper-
ties (R, hjâlj2i) and elastic parameters (�, �, �)

hjâlj2i ¼ kBT

8bþ � lðl�1Þðlþ1Þðlþ2Þ
R2

: (7)

From fitting the spectral intensities to Eq. (7), � and b
can be determined. The elastic parameter relationships

(see supplemental material [12]), allow for Y to be deter-
mined when a value for the Poisson ratio 
 is assumed
(we choose 
 ¼ 0:3 [13])
The theory described here is based upon deformations of

spherical shells, and while we will be applying this method
to spherical capsids, in actuality the capsids deviate from
pure sphericity. The deformations we compute are radial,
but not necessarily normal to the capsid surface. Defining
the surface normal is not a straightforward calculation and
therefore we are introducing an approximation into our
calculation; however, we believe this error arising from
this approximation will be small. The more spherical the
virus, the smaller the error, and therefore we calculate the
capsid asphericity (A) as a gauge for understanding poten-

tial errors A ¼ 1
N

P
N
i¼1

ðRi�hRiÞ2
hRi2 , where N is the number of

surface grid points and Ri is the radius at each grid point.
The system we study in this work is the Sesbania mosaic

virus (SeMV), an RNA plant virus. The wild-type SeMV
forms a T ¼ 3 capsid, but deletion of the 31 N-terminal
residues results in the formation of a mutant T ¼ 1 particle
[14], shown in Fig. 1(a). The asphericity of this structure is
10�3, which is an intermediate degree of faceting [2]. In
this work, we focus exclusively on the T ¼ 1 capsid, as the
reduced size allows us to access longer simulation times.
Furthermore, it has been unclear at what size of capsid it is
appropriate to apply continuum elasticity theory. We pro-
vide evidence that even the smallest class of virus (T ¼ 1)
can be suitably treated in this manner, as we observe
surface thermal fluctuations of the capsid to be well de-
scribed by the elastic model in Eq. (7).
To generate the surface fluctuations we carried out a

molecular dynamics (MD) simulation of the complete
T ¼ 1 SeMV capsid, including explicit water and ions.
After the system equilibrates, spherical harmonic decom-
position of � , according to Eq. (3) with lmax ¼ 11, is
performed every 1 ps. Further details regarding the simu-
lation protocol and surface fluctuation decomposition are
presented in the supplemental material [12].
The coefficients hjâlj2i are calculated and plotted against

the mode number l in Fig. 1(b) (d). Modes with l < 2
correspond to uniform expansion (l ¼ 0) and polar and
equatorial dimpling (l ¼ 1); the surface deformations
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FIG. 1 (color). Structure and fluctuation spectrums of the SeMV mutant T ¼ 1 capsid. (a) Outside and inside view of the capsid.
Images were generated by VIPERdb from PDB:1x36. (b) Spectral intensities of surface fluctuations of SeMV trajectories from MD.
Note mode l ¼ 1 for the icosahedrally constrained data set is�10�28 nm2, and is not shown. (c) Comparison of MD and ENM spectral
intensities of surface fluctuations. The lines are fits to the elastic model in Eq. (7), the solid line is the fit to the ENM data, and the
dashed line is the fit to the all-atom MD data.
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minimally project onto these modes and the fitting is
performed on modes with l � 2. The highest mode we fit
is for l ¼ 6, as higher modes deviate from the theoretical
model given by Eq. (7). We attribute this behavior to a
breakdown in the continuum model at short wavelengths,
where the molecular behavior becomes more dominant.
The length scale at which the breakdown occurs coincides
with the dimension of the subunit (also roughly the thick-
ness of the shell). A rough estimate of the subunit diameter
(assuming a spherical shell and spherical subunit) is 4 nm;
the corresponding Nyquist critical frequency is therefore
0:125 nm�1. The frequency of Yl¼6;m¼0 is 0:122 nm�1

and Yl¼7;m¼0 is 0:142 nm�1; therefore, the breakdown

should occur between l ¼ 6 and l ¼ 7, which is what is
observed. This change in regime for thermal fluctuations at
higher frequency has also been observed in several simu-
lations of lipid bilayers at lengths below the bilayer thick-
ness [15,16].

From the fit to the lower frequency modes in Fig. 1(b)
(d), we determine Y ¼ 35:4kBT=nm

2, � ¼ 39:7kBT, and
� ¼ 54:1. Our calculation of the ratio of elastic parameters
Y=� � nm�2 is consistent with a previous theoretical
study in which continuum elastic shells were fit to experi-
mentally determined capsid structures [2], the absolute
magnitudes are also in the range of previous predictions.
Theoretical estimates, and estimates based on AFM experi-
ments, have predicted Y to be in the range of
10–250kBT=nm

2 and � to be in the range of 10–250kBT
[3,8,17,18]. For an additional consistency check we com-
pute an effective mechanical thickness from the values of Y
and � and compare this value to our measured value of
1.9 nm. The mechanical thickness h can be estimated from
the equations which relate the 2D quantities to the 3D
Young’s modulus E (see supplemental material [12])
[19]. The effective mechanical thickness we calculate is
2.6 nm, which agrees with the measured value of 1.9 nm,
and supports our estimates of Y and �.

Conducting all-atom MD simulations of small virus
capsids is becoming more attainable with increasing com-
puting power [20]; however, examining larger structures
(e.g., T � 7) will require utilization of less expensive
calculation methodologies. Elastic network models
(ENM) and normal mode analysis (NMA) have been
used extensively in studying protein dynamics [21], includ-
ing viruses [13,22], and we have explored using ENMs for
computing virus dynamics. An ENM for the SeMV T ¼ 1
structure was constructed and the normal modes were
calculated using the rotation-translation block method
[23,24]. The network is propagated according to �rnðtÞ ¼PN

i¼7 Ci�
i
n cosð!itþ c iÞ, where �rn is the displacement

vector of atom n, �i
n is the Eigenvector of mode i projected

onto atom n,! is the frequency of the mode, c is a random
phase shift of the mode, and C is the amplitude of the
mode. We choose to set the amplitude the same for all
modes and choose a value for C that produces a root mean

square atomic fluctuations of 1 Å, which are typical of the
thermal scale (300 K). Further details about the ENM
construction and propagation and the NMA of the network
is presented in the supplemental material [12]. The result-
ant spherical harmonic mode magnitudes hjâlj2iENM can
then be rescaled such that the sum of the modes from the
ENM matches the sum of modes from an MD simulation

hjâlj2i ¼
ðP
l

hjâlj2iMDÞ
ðP
l

hjâlj2iENMÞ
hjâlj2iENM: (8)

This rescaling indicates an MD trajectory must also be
preformed, however, we can exploit the icosahedral sym-
metry of the virus to calculate

P
lhjâlj2iMD by conducting a

MD simulation of only the asymmetric unit of the virus
under icosahedral boundary conditions [25]. From Eq. (7)
we should expect that two simulations of the same system
at the same temperature to produce the same

P
lhjâlj2i.

The enforcement of icosahedral symmetry will redistribute
the modes magnitudes, however, the sum of the modes
should be conserved. We compare the spectrum of
both the unconstrained (d) and icosahedrally constrained
(m) MD simulations in Fig. 1(b) and close agreement
of sums of the modes are observed:

P
lhjâlj2icomplete capsid ¼

1:78� 10�2 nm2,
P

lhjâlj2iicosahedrally constrained ¼ 1:62�
10�2 nm2. Most of the motion of the icosahedral system
is accounted for by modes l ¼ 0, 6, 10, and naturally, these
are the spherical harmonics which are also icosahedrally
symmetric [2]. Further details on the asymmetric unit
simulation under icosahedral boundary conditions are pre-
sented in the supplemental material [12].
We fit the renormalized ENM spectral intensity in the

long wavelength range (l 	 6) and compare it to the un-
constrained MD spectrum in Fig. 1(c). There is strong
agreement between the two models. From the ENM spec-
tral intensities we calculated Y ¼ 31:7kBT=nm

2, � ¼
40:6kBT, and � ¼ 44:4, which agree with the values cal-
culated from MD.
In the derivation of the elastic model, we only consid-

ered radial deformations in the forces equation as an
approximation to the full 3D forces equations [11]. We
expect that the major component of the surface deforma-
tion will be radial, but to check this assumption we per-
formed an additional analysis on the ENM trajectory. The
2D surfaces are constructed by binning atoms in ��	
space and computing the average radial position within an
element. Likewise, we can compute the average � and 	
positions within an element and the total displacement (ds)
of the element from its mean position ds2 ¼ dr2 þ
r2d�2 þ r2sin2�d	2. By averaging over all elements and
over all frames of the trajectory, we can compute the
average contribution the radial displacement makes to
the total displacement hdr2=ds2i ¼ 0:73 and find than the
deformation is dominated by the radial component.
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Wewere interested in understanding the relative internal
flexibility of the subunit proteins compared to the flexibil-
ity of the subunit interface. To explore this question, we
assume the spherical harmonic coefficients of the fully
flexible capsid (flex) can be partitioned between the pro-
jections of the internal subunit motions (sub) and projec-
tions from the interface motions with rigid subunits (rig)

hjâlj2iflex ¼ hjâlj2isub þ hjâlj2irig: (9)

The hjâlj2iflex are known from the ENM trajectories pre-
sented in Fig. 1(c), hjâlj2irig can be calculated by construct-
ing an ENM trajectory in which the subunits are treated as
rigid units. Presumably the elastic parameters are changing
between the rigid subunit network and the flexible network
and therefore the scaling used to go between MD and the
flexible ENM is no longer valid. Instead, we assume that
the lowest order mode (l ¼ 0) is fully captured by the
rigid subunit motions and use the scaling factor
hjâl¼0j2iflex=hjâl¼0j2irig, to weight the hjâlj2irig’s. The re-

normalized rigid subunit spectrum can be fit via Eq. (7) and
we obtain Yrig ¼ 42:1kBT=nm

2 and �rig ¼ 81:6kBT. The

difference between the flexible and rigid subunit spectra
[Eq. (9)], gives the spectrum for a network with flexible
subunits and fixed interfaces. When we fit this spectrum
we obtain Ysub ¼ 112:6kBT=nm

2 and �sub ¼ 72:1kBT, the
spectra and associated fits are presented in Fig. S1 of the
supplemental material [12]. From the computed moduli,
we observe that the subunit is nearly 3 times more resistive
to stretching deformations than the interface, while the
bending moduli of the interface and subunit have compa-
rable stiffness values. Hence, a majority of the overall
flexibility is coming from the subunit-subunit interface,
while the subunit itself is relatively rigid. This is consistent
with the observed change in behavior of the spectrum
below wavelengths on the order of the subunit dimensions.
Control of the subunit-subunit interaction strength should
be the dominant mechanism for controlling virus flexibil-
ity; this can be viewed as a design principle [26].

In this work, we have provided a theoretical framework
for the determination of the elastic properties Y and � from
the surface thermal fluctuations. We used atomic level
simulations to measure the surface fluctuation spectrum
and then showed agreement with the theoretical model, for
the smallest class of virus capsid (T ¼ 1), affirming the
applicability of continuum theory to viruses. In addition to
providing quantitative estimates of capsid elastic parame-
ters, this work provides a methodology for calculating
these properties without conducting a whole-capsid simu-
lation, establishing a method that can be extended to larger
capsid systems.
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