
Cooling of Nanomechanical Resonators by Thermally Activated Single-Electron Transport

F. Santandrea,1 L. Y. Gorelik,2 R. I. Shekhter,1 and M. Jonson1,3,4

1Department of Physics, University of Gothenburg, SE-412 96 Göteborg, Sweden
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We show that the vibrations of a nanomechanical resonator can be cooled to near its quantum ground

state by tunneling injection of electrons from a scanning tunneling microscope tip. The interplay between

two mechanisms for coupling the electronic and mechanical degrees of freedom results in a bias-voltage-

dependent difference between the probability amplitudes for vibron emission and absorption during

tunneling. For a bias voltage just below the Coulomb blockade threshold, we find that absorption

dominates, which leads to cooling corresponding to an average vibron population of the fundamental

bending mode of 0.2.
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Remarkable steps are now being taken towards achiev-
ing the experimental conditions under which macroscopic
degrees of freedom (such as the center of mass of systems
composed by a large number of atoms) manifest quantum
behavior [1]. This is encouraging both for the prospects of
realizing a plethora of applications that depend on our
ability to control and monitor the coherent dynamics of
nanometer-scale mechanical oscillators and for shedding
light on purely fundamental issues, such as the nature of
the crossover from classical to quantum physics [2].

However, cooling down mechanical resonators to tem-
peratures at which the quantum features of their dynamics
should be observable (which requires kBT � @!, where!
is the eigenfrequency of the resonator) is still challenging if
! & 1 GHz.

In order to overcome this problem, a number of pro-
posals have been put forward [3]. Some of them are based
on the well-established principles of laser cooling for
atoms and molecules, whereas alternative approaches
show that, in the case of nanowire-based resonators, it is
possible to achieve ground-state cooling by coupling them
with a suitable nonequilibrium electronic environment.

A common feature of all these proposals is that they rely,
in one form or another, on resonant transitions between
coherent states of the refrigerant. Basically, they exploit
the energy conservation constraint in order to suppress
those processes that involve emission of vibrational energy
quanta (vibrons) with respect to those that lead to the
absorption of such quanta.

Here we present a fundamentally new mechanism for
cooling a suspended carbon nanotube-based resonator.
This mechanism does not rely on the energy conservation
constraint and allows one to approach the ground state of
the mechanical vibrations by simply exploiting incoherent,
thermally excited states of the nonequilibrium electronic
subsystem used as a refrigerant.

To be specific, we consider the system sketched in
Fig. 1, where electrons are injected from the tip of a
scanning tunneling microscope (STM) into a suspended
metallic carbon nanotube. Low-temperature tunneling
spectroscopy studies on a similar device have shown that
inelastic electron tunneling can create a non-thermal-
equilibrium population of vibronic states in the nanotube
[4]. Below, we will show that the probability for vibron
emission can be suppressed as a result of destructive
interference between two different mechanisms for cou-
pling the mechanical and electronic degrees of freedom of
the system. One of these mechanisms is the nanotube-
position-dependent probability amplitude for electron tun-
neling from the STM tip to the nanotube, and the other is
the electrostatic force on the nanotube when it is charged.
It turns out that the effect of the interference depends on

the voltage bias between the STM tip and the leads. Our
analysis shows that the destructive interference is maximal
for a bias voltage slightly below the threshold voltage for
lifting the Coulomb blockade of electron tunneling through
the system. If the nanotube is weakly enough coupled to
the environment, the suppression of vibron emission is
strong enough to drive the nanotube to near its vibrational

FIG. 1 (color online). Sketch of the model system considered.
A metallic carbon nanotube is suspended over a trench between
two grounded metallic leads, while an STM tip placed a distance
h above the nanotube is biased at a negative voltage �V.
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ground state and hence effectively ‘‘cool’’ the mechanical
degrees of freedom.

In order to analyze the dynamics of the nanotube and of
the tunneling electrons in the quantum regime, we intro-
duce a model Hamiltonian: H ¼ He þHm þHt þHC,
where

He ¼
X

q;�

Eq;�a
y
q;�aq;� þX

q

�qc
y
qcq; (1)

Hm ¼ @!ðbybþ 1=2Þ; (2)

Ht ¼
X

q;q0
ei’̂cy

q0 ½tSðX̂Þaq;S þ tLaq;L� þ H:c:; (3)

aðyÞq;� and cðyÞq being the annihilation (creation) operators for
electrons in the STM tip (� ¼ S), in the leads
(� ¼ L), and in the nanotube, respectively.

The first term in the total Hamiltonian,He, describes the
STM tip, the leads, and the nanotube as reservoirs of non-
interacting electrons. The second term, Hm, describes the
nanotube’s mechanical degrees of freedom, which we re-
strict to the fundamental bending mode considered as a

simple harmonic oscillator with angular frequency !, bðyÞ
being the annihilation (creation) operator for an elemen-
tary excitation (vibron) of this mode.

Electron tunneling between the STM tip and the nano-
tube and between the nanotube and the leads is described
by Ht, the third term of the Hamiltonian, in terms of the
tunneling amplitudes tS and tL. Here the operator ei’̂

changes the number N of excess electrons on the nanotube

by one: e�i’̂N̂ei’̂ ¼ N̂ þ 1. Since tS depends on the over-
lap between electronic states in the STM tip and the nano-
tube, it depends on the deflection of the tube through the

operator X̂ ¼ �xgsðby þ bÞ, where �xgs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ð2M!Þp

is

the displacement uncertainty in the vibrational ground state
and M is an effective oscillator mass (�xgs � 10�11 m for

!� 109 s�1 and M� 10�22 kg). In contrast, the distance
between the nanotube and the leads is fixed, so that tL does
not depend on the nanotube deflection.

For simplicity, we assume that the STM tip is positioned
above the midpoint of the nanotube (see Fig. 1) and model
the deflection dependence of the tunneling amplitude as

tSðX̂Þ � tS expðX̂=�Þ, where � is the characteristic tunnel-
ing length of the barrier (� ’ 10�10 m). Such a form of the
tunneling amplitude accounts for the fact that tunneling of
electrons between the STM tip and the nanotube generates
fluctuations in the nanotube momentum of the order of
�p� @=� [5]. In what follows, we will refer to this
mechanism of interaction between mechanical and elec-
tronic degrees of freedom as a tunneling electromechanical
(TEM) coupling.

The last term in the total Hamiltonian,HC, describes the
electrostatic interactions in the system, which we will
treat in the framework of the capacitance model. In this

approximation HC depends only on the total charge on the
nanotube and on the voltages applied to the bulk elec-
trodes. Assuming the supporting leads to be grounded
and that a negative electrostatic potential �V (V > 0) is
applied to the STM electrode, we restrict our analysis to the
Coulomb blockade regime in which at most one extra
electron may reside on the nanotube. Under such condi-
tions, HC can be written as [6]

HC ¼ e

�
CgðVC � VÞ

C�

þ V

�
N̂ � CSCgV

2

2C�

; (4)

where C� ¼ CS þ Cg, CS (� 10�18 F from the data re-

ported in Ref. [4]) is the mutual capacitance between
nanotube and STM tip, Cg is the total capacitance between

nanotube and ground, VC ¼ e=2Cg is the threshold value

of V for lifting the Coulomb blockade (VC ’ a few mV for
Cg � 10�17 F), and �e is the electronic charge.

In general, CS and Cg both depend on the geometry of

the system and therefore on the nanotube deflection. Here
we will take only the dominant deflection dependence of

the STM-nanotube capacitance into account. Hence CS ¼
CSðh� X̂Þ, where h is the distance between the STM and
the straight nanotube. For small displacements of the nano-
tube, we may linearize the interaction Hamiltonian (4) and
use an approximation that for CS � Cg takes the form

HC ¼ UCðVÞN̂ � FX̂ N̂��ðX̂ÞV2; (5)

whereF � 2ð@CS=@xÞ0VC�V and �V � VC � V. The first
term of (5) determines the Coulomb blockade effect in the
absence of nanotube deflections, while the second is a
deflection-dependent electromechanical interaction term.
Because of a formal analogy with the interaction term in
the model Hamiltonian for the polaron problem, we will
refer to the origin of this term as a polaronic electrome-
chanical (PEM) coupling. The last term of (5) is a contri-
bution that does not depend on whether the nanotube is
charged or not.
It is important for what follows that the sign of the

polaronic force constant F in (5) depends on the bias
voltage. If the bias voltage is below the Coulomb blockade
threshold, so that only thermally activated transport is
possible, i.e., if �V > 0, then F> 0 and hence if charged
by an electron the nanotube will be attracted to the STM
tip. On the other hand, if �V < 0, then F< 0 and the
charged nanotube is repelled from the STM.
Note that the possibility to change the sign of F by

varying the bias voltage crucially relies on the discrete
nature of the tunneling charge. If this charge could be
arbitrarily small, then VC ! 0 and hence F / �V. For
any (positive) value of V, the polaronic force would there-
fore be negative and push the charged nanotube away from
the STM tip, decreasing the tunneling matrix element [7].
As we have seen above, the electromechanical interac-

tion is described by two separate terms in the Hamiltonian,
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one due to what we call TEM coupling and the other due to
PEM coupling. The cooling mechanism to be discussed
below results from the interplay between these different
types of coupling. In order to analyze this interplay,
it is convenient to apply a unitary transformation that
removes the polaronic term from the Hamiltonian and
instead makes the tunneling amplitudes dependent on

both the midpoint position X̂ of the nanotube and its

conjugate momentum P̂ ¼ i@ðby � bÞ=2�xgs. This is

achieved by the transformation H ! ~H ¼ UHUy, where
U � expði�xeP̂ N̂ =@Þ. Here �xe ¼ ðxe;1 � xe;0Þ=2 ¼
F=2M!2 is the difference between the equilibrium
positions of the charged and neutral nanotube. To leading
order in the small dimensionless parameters "t ¼ �xgs=�

and "p ¼ �xe=�xgs, the transformed tunneling

Hamiltonian (3) is

~H t ¼ tS
X

k;q

½1� ð"t þ "pÞbþ ð"t � "pÞby�cyqak;S

þ tL
X

k;q

ð1� "pbþ "pb
yÞayk;Lcq þ H:c: (6)

From Eq. (6), it follows that in the Born approximation the
rate of inelastic single-electron tunneling from the STM tip
to the nanotube accompanied by the absorption (þ ) or
emission (� ) of a vibron is

�S;� ¼ �Sð"2t þ "2p � 2"t"pÞ; (7)

where �S ¼ ð�V=eRSÞ½expðe�V=kBTÞ � 1��1 is the rate
of elastic electron tunneling across the STM-nanotube
junction, RS being the tunnel resistance of the junction.

The first (second) term of (7) gives the probability for
tunneling assisted by either absorption or emission of a
vibron due to the TEM (PEM) coupling alone, while the
third term corresponds to the ‘‘interference’’ between these
two mechanisms in the case of vibron emission (�) and
absorption (þ). Clearly, the probability for vibron-assisted
electron tunneling is different depending on whether a
vibron is absorbed or emitted, and the difference can be
controlled by the bias voltage since "p / �xe / �V.

In particular, �xe > 0 if �V > 0 so that the interference
is destructive (constructive) for tunneling accompanied by
vibron emission (absorption). If �V < 0, the situation is
reversed in the sense that �xe < 0 and the interference is
constructive (destructive) for emission (absorption)
processes.

The case of constructive interference for emission pro-
cesses has been analyzed in Ref. [8], where it was shown
that a promotion of emission over absorption processes
may lead to an electromechanical instability of the system
if V exceeds a certain dissipation-dependent threshold.
Here we will focus on the reverse situation.

A complete suppression of the emission processes would
eventually drive the mechanical subsystem to its ground
state. However, two more types of electronic transitions

that may generate vibron emission remain to be consid-
ered. The first is the tunneling of an electron from the
nanotube to the STM. By virtue of time reversal symmetry,
the mechanism responsible for the suppression of vibron
emission during tunneling from the STM to the nanotube
stimulates the emission of vibrons during tunneling in the
reverse direction.
In order to make the effect of such transitions negligible

in the energy balance for the mechanical subsystem, an
electron that has tunneled from the STM should escape
from the nanotube to the leads before it can tunnel back to
the STM by an inelastic transition. This requires that the
tunnel resistance of the nanotube-leads junction, RL, must
be much smaller than RS and that kBT � eVC, where the
latter constraint ensures an exponential suppression of
the probability for electrons to tunnel from the leads to
the nanotube. These conditions together with the Coulomb
blockade regime of electronic transport can be achieved
experimentally if RS � 1 M�.
In addition to the ‘‘backward’’ tunneling transitions,

vibrons can also be emitted when electrons tunnel from
the nanotube to the leads, but then only by virtue of the
polaronic coupling mechanism [see Eq. (6)].
From Eqs. (7) and (6) and the definitions of "t and "p, it

follows that the ratio between the total rate of vibron
emission and the total rate of vibron absorption reaches
an absolute minimum for the bias voltage V� ¼ Vc � �V�

that verifies the condition Fð�V�Þ ¼ @!=
ffiffiffi
2

p
�. From the

above considerations, we conclude that cooling of the
nanotube vibrations can occur only for bias voltages below
the Coulomb blockade threshold (�V > 0).
However, below the Coulomb blockade threshold volt-

age, charge transport is blocked at zero temperature. The
temperature needed to overcome the Coulomb blockade is
determined by kBT � e�V. On the other hand, the tem-
perature cannot be too high, since otherwise backward
transitions from the leads to the nanotube would no longer
be negligible and possibly compensate for the vibrons
absorbed during the ‘‘forward’’ transitions. These condi-
tions restrict the range of possible temperatures to the
interval eVC 	 kBT � e�V ffi e�V�.
The order of magnitude of the lower bound can be found

by means of the condition of minimum vibron rate emis-
sion and by estimating the capacitance between the STM
tip and the nanotube as CS ’ 10�18 F, so that the tempera-
ture required in order to overcome the Coulomb blockade
at �V� turns out to be about 0.1 K.
For a quantitative analysis of the cooling mechanism

described above, we followed the standard procedure to
derive a generalized master equation for the reduced den-
sity matrix that describes the nanotube degrees of freedom
[9]. After tracing out the charge degrees of freedom and
applying a perturbation approach with respect to the small
parameters �t;p, one gets a set of equations for the proba-

bilities pn to find the nanotube in the Fock state jni
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characterized by n vibrons. If the rate �L of tunneling from
the nanotube to the leads is much larger than the rate �S of
tunneling from the STM to the nanotube, these equations
reduce to

½ð4nþ2Þ"2pþð2nþ1Þ"2t �2"p"t�pn�
L�½pn�
�S

¼½ð"pþ"tÞ2þ"2p�ðnþ1Þpnþ1þ½ð"p�"tÞ2þ"2p�npn�1;

(8)

where L� describes the interaction with the environment,

which takes the standard form [10]L�½pn� � �ðn þ 1Þ �
½ðnth þ 1Þpnþ1 � nthpn� � �n½ðnth þ 1Þpn � nthpn�1�,
where � � !=Q, Q being the quality factor of the nano-

tube resonator, and nth ¼ ðe@!=kBT � 1Þ�1 is the thermal
average number of vibrons.

Equation (8) can be solved for the stationary probability
distribution pn with the result

pn ¼ ð1� rÞrn;

r ¼ "2p þ ð"t � "pÞ2 þ ð�=�SÞnth
"2p þ ð"t þ "pÞ2 þ ð�=�SÞðnth þ 1Þ :

(9)

The average number of vibrons, hni ¼ P
mmpm ¼

r=ð1� rÞ, is plotted as a function of the bias voltage for
several values of the quality factor in Fig. 2. The theoretical
limit of the cooling efficiency occurs for the bias voltage

defined by "pð�V�Þ ¼ "t=
ffiffiffi
2

p
in the limit Q ! 1.

Equation (9) implies that the corresponding average num-

ber of excitations is hnimin ¼ ð ffiffiffi
2

p � 1Þ=2 � 0:2.
In order to investigate the signatures of the cooling

mechanism in a directly measurable property, we have
calculated the current I perturbatively to second order in

"t;p with the result I ¼ I0½1þ "2t ð1þ 2hniÞ�. Here

I0 ¼ e�S with �S � kBT=e
2RS if kBT 	 e�V� and �S

remains independent of voltage in a certain voltage inter-
val, where the differential conductance will be completely
determined by the derivative of the average number of
vibrons with respect to voltage, i.e., @I=@V ffi
2I0"

2
t @hni=@V. Therefore, the cooling effect will be re-

flected in the structure of the dI=dV � V curves and
accessible for experimental investigation.
In conclusion, we have proposed a novel mechanism for

ground-state cooling of nanomechanical resonators based
on the injection of a tunneling current from a voltage-
biased STM tip. For the model system considered we
have shown that, by varying the voltage bias, it is possible
to control the interference between two distinct contribu-
tions to the quantum probability amplitudes for vibron
absorption and emission during electron tunneling. For a
bias voltage slightly below the Coulomb blockade thresh-
old voltage, the probability amplitude for vibron emission
becomes very small. At this bias a thermally activated
current therefore leads to a cooling of the nanomechanical
vibrations. Our analysis shows that the effective tempera-
ture that can be reached may correspond to an average
vibron population of the fundamental bending mode as low
as 0.2. The cooling mechanism is crucially dependent on
the Coulomb blockade phenomenon and hence on the
quantization of electric charge.
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FIG. 2 (color online). Average number of vibrons hni plotted
against the difference �V ¼ VC � V between the Coulomb
blockade threshold voltage VC and the bias voltage V. Each
curve corresponds to a different quality factor of the oscillator,
while the straight line gives the thermal average number of
vibrons at the temperature of T ¼ 1 K. Other parameters used
were VC ¼ 2 mV, RS ¼ 2:5 M�, RL ¼ 250 k�, "t ¼ 0:27, and
"pð/ �VÞ ¼ 0:0–0:3.
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