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We present the first numerical computation of the neutral fermion gap, �F, in the � ¼ 5=2 quantum

Hall state, which is analogous to the energy gap for a Bogoliubov-de Gennes quasiparticle in a

superconductor. We find �F � 0:027 e2

"‘0
, comparable to the charge gap. We also deduce an effective

Fermi velocity vF for neutral fermions from the low-energy spectra for odd numbers of electrons, and

thereby obtain a correlation length �F ¼ vF=�F � 1:3‘0. We comment on implications for experiments,

topological quantum information processing, and electronic mechanisms of superconductivity.
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The � ¼ 5=2 fractional quantum Hall state [1–3] has
been the subject of intense investigation in recent years
because it may support non-Abelian anyons and may serve
as a platform for topological quantum information process-
ing [4–6]. Theoretical [7–13] and experimental [14–17]
evidence has been rapidly accumulating which is consis-
tent with � ¼ 5=2 being an Ising-type non-Abelian state, in
the universality class of either the Moore-Read (MR)

Pfaffian state [18,19] or the anti-Pfaffian (Pf) state
[20,21]. However, there are also some experiments
[22–24] which are difficult, though not impossible, to
interpret in a manner consistent with the simplest incarna-
tions of either of these states. Some numerical studies
[10,25–28] highlight their sensitivity to system size and
the precise form of the Hamiltonian.

If the � ¼ 5=2 fractional quantum Hall state is proven
experimentally to be non-Abelian, then its potential use for
topological quantum information processing is dependent
on the size of the energy gaps �a to different species of
quasiparticles a. If the temperature T can be kept much less
than these gaps �a and interquasiparticle distances x kept
much greater than the tunneling correlation lengths �a,

then the corresponding error rates will vanish as e��a=T

and e�x=�a and, hence, be negligible.

For the MR and Pf states, the minimal charge �e=4
quasiparticles also carry non-Abelian Ising topological
charge �. It is natural to interpret the transport gap �trans,

extracted from �xx � e��trans=2T , as the energy gap �c �
�e=4 þ��e=4 for a charge �e=4 quasihole-quasiparticle

pair, which is thereby deduced from experiments to be
�c � �trans � 0:5 K in the highest-mobility samples
[29]. Numerical studies of small numbers of electrons at
� ¼ 5=2 with Landau-level mixing, finite thickness, and

disorder neglected find �c � 0:025� 0:029 e2

"‘0
(which is

3.2–3.7 K at 6.5 T) [9,30].
However, bulk electrical transport is not sensitive

to the energy gap of electrically neutral excitations.

Consequently, the neutral fermion gap, �F, has not been
measured (though it could from thermal transport measure-
ments or interferometry measurements).�F has previously
not been theoretically calculated, either.

The MR and Pf states are the quantum Hall analogues
of spin-polarized px þ ipy superconductors [18,19,31].

Charge e=4 quasiparticles � correspond to flux hc=2e
vortices; neutral fermions c correspond to Bogoliubov–
de Gennes quasiparticles. In most superconductors, these
two gaps have completely different scales and are not
considered on the same footing. However, in the � ¼ 5=2
state, there is only a single energy scale e2="‘0, so these
gaps can be comparable. Thus far, however, only �c has
been computed. In this Letter, we compute �F. This is the
appropriate quantity to use when comparing the gap in the
� ¼ 5=2 state to the gaps in other superconductors.
The neutral Fermion gap is also a relevant quantity in

determining the effectiveness of topological protection in
Ising-type quantum Hall states, should they exist in nature.
The transfer of Ising c charge between quasiparticles, e.g.,
through tunneling, alters the nonlocal state shared by the
quasiparticles. It is, thus, responsible for splitting the de-
generate nonlocal states and causing errors in the encoded
information [32]. Similarly, the neutral fermion gap di-
rectly determines the visibility of non-Abelian statistical
signatures in interference experiments (see [33–35], and
references therein), since tunneling of the neutral c charge
can suppress interference terms. In this Letter, we produce
numerical estimates of the neutral fermion gap and corre-
lation length for the � ¼ 5=2 quantum Hall state.
To model the � ¼ 5=2 state, we assume that both spins

of the lowest Landau level are filled and inert and focus on
the second Landau level, which has � ¼ 1=2. We perform
numerical calculations with Ne electrons on the sphere at
the flux values N� ¼ 2Ne � 3 at which the MR ground-

state would occur for Ne even. We study small systems
(Ne � 15 electrons) by exact diagonalization and larger
systems (13 � Ne � 26 electrons) by the density-matrix
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renormalization group (DMRG), as in [9,13,36]. We work
in the simplified situation of electrons interacting through
Coulomb interactions, neglecting finite layer thickness
[10], Landau-level mixing [11,12,27], and disorder.
These play a role in real devices, and a more realistic
calculation, including these effects, will be discussed else-
where [37]. For the remainder of this Letter, wewill use the
term ‘‘� ¼ 5=2 state’’ to refer to this idealized model.

To compute the energy gap for an electrically neutral
quasiparticle, we need to compare the ground state to a
configuration that forces the system to have a neutral
excitation of nontrivial topological charge. By increasing
the electron number by 1 and the flux by 2, we maintain
charge neutrality. However, an electron together with two
flux quanta is a fermion (i.e., a ‘‘composite fermion’’).
Thus, an incompressible state at � ¼ nþ 1=2 will generi-
cally have a neutral fermionic excitation, and its energy
can be computed by comparing the lowest energy with
electron number Ne and flux N�, which we will denote by

EðN�;NeÞ and the lowest energy EðN� þ 2; Ne þ 1Þ with
electron number Ne þ 1 and flux N� þ 2. Since a state

with an odd number Ne of electrons should be understood
as a state with a neutral fermionic excitation, we will
reserve the term ground state for the lowest energy state
for Ne even and N� ¼ 2Ne � 3 and use ‘‘lowest energy

state’’ for generic values of Ne, N�.

To isolate the energy of a neutral fermion we subtract off
the Ne dependence of the ground-state energy:

�FðNeÞ � ð�1ÞNe

2
½EðN� þ 2; Ne þ 1Þ

þ EðN� � 2; Ne � 1Þ � 2EðN�;NeÞ�: (1)

In the regime in which EðN�;NeÞ scales linearly with Ne,

the neutral fermion gap �FðNeÞ will be constant. It is
instructive to contrast Eq. (1) with the expression for the
charge gap, �cðNeÞ¼ 1

2½EðN�þ1;NeÞþEðN��1;NeÞ�
2EðN�;NeÞ�. In Eq. (1), we compare the energies of sys-

tems with the same charge-flux relation so that the net
charge of all excitations is zero while �c compares the
energies of states with fluxes offset by one so that the net
charge of all excitations is �e. One should also not confuse
the neutral fermion gap �F with the ‘‘neutral gap,’’ which
is the energy gap above the ground state at a fixed N�.

We have computed the ground-state energies for even
numbers of electrons up to Ne ¼ 26 and the lowest state
energies for odd numbers of electrons up to Ne ¼ 17. In a
recent calculation, Lu et al. [38] have computed these
energies up to Ne ¼ 18 electrons by exact diagonalization;
our energies are in agreement with theirs. In Fig. 1, we
show the values of the neutral fermion gap �FðNeÞ,
computed using Eq. (1), as a function of inverse system
size 1=Ne for up to Ne ¼ 17 electrons. As shown in Fig. 1,
the neutral fermion gap fluctuates considerably, a sign of
finite-size effects. A purely linear fit gives �F �
limNe!1�FðNeÞ � 0:028; fitting to a constant gives

�F � 0:023. However, the errors in these fits, determined

from the maximum fluctuation away from the average, are
large (though �F is clearly nonzero). Therefore, more care
is needed in order to perform an Ne ! 1 extrapolation.
To this end, we note that if the system is gapped, then we

can write EðN�;NeÞ in the form

EðN�;NeÞ ¼ ENe þ Eeven;odd þOðe�a
ffiffiffiffiffi
Ne

p Þ (2)

for Ne even or odd, respectively. The leading terms are the
same for even and oddNe because the energy per particle E
must be the same in the thermodynamic limit. The constant
terms Eeven;odd are due to the internal order of the phase and

the genus of the system [39], as well as the energy cost of
the (collectively) neutral quasiparticle(s) for Ne odd.
Corrections to these first two terms are exponentially small
in the linear size of the system (� ffiffiffiffiffiffi

Ne

p
) since the system

has a gap; here, a is a constant inversely proportional to the
correlation length.
Substituting Eq. (2) into Eq. (1), we find

�FðNeÞ ¼ Eodd � Eeven þOðe�a
ffiffiffiffiffi
Ne

p Þ (3)

and thus �F ¼ Eodd � Eeven, further justifying our defini-
tion of the neutral fermion gap. We can, however, use
Eq. (2) to extract Eodd � Eeven more directly by simply
fitting the numerical data with functions of this form, and it
allows us to exploit the larger system sizes for which we
have computed the ground-state energies for even Ne. In
Fig. 2, we plot EðN�;NeÞ=Ne vs 1=Ne, and fitting to Eq. (2)

(divided byNe) but replacing, for simplicity, theOðe�a
ffiffiffiffiffi
Ne

p Þ
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FIG. 1. The neutral fermion gap, as defined in Eq. (1), for the
� ¼ 5=2 quantum Hall state as a function of inverse system
size 1=Ne.
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FIG. 2 (color online). The Ne ! 1 extrapolation of
EðN�;NeÞ=Ne corresponding to the � ¼ 5=2 state for Ne even

(squares) and Ne odd (dots) using Eq. (2), from which we find
�F � 0:027.
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term by a single term ce�a
ffiffiffiffiffi
Ne

p
, we find E ¼ �0:3634,

Eeven ¼ �0:5381, and Eodd ¼ �0:5114. For Ne even, we
find c ¼ �0:7876 and a ¼ 0:6675, while for Ne odd we
find c ¼ �1:4700 and a ¼ 0:8287. Thus, we can reliably
extract the thermodynamic limit of the neutral fermion gap
by taking the difference between the 1=Ne terms in the
expressions for EðN�;NeÞ=Ne. We find Eodd � Eeven �
0:027 (in units of e2="‘0).

It is easier in this method to diagnose potential difficul-
ties with the Ne ! 1 extrapolation. One potential pitfall is
aliasing. If one of the systems studied is actually in the
ground state of a different phase, then EðN�;NeÞ=Ne

would not sit on the expected (nearly linear) curve. As
may be seen from the figure, the data points deviate
negligibly from the fitting curves, so this is not the case
for the system sizes we study. At any rate, the most serious
potential aliases occur at Ne < 10, which we do not con-
sider for the extrapolation in Fig. 2.

The preceding considerations are completely general.
We now momentarily interpret our results in terms of a
putative Ising-type system at this filling fraction, where the
lowest energy state on the sphere with Ne odd electrons
must have nontrivial quasiparticles whose total topological
charge is c [39]. The two simplest possibilities are that
such a state either has a neutral c quasiparticle, or a charge
e=4 � quasihole and �e=4 � quasiparticle pair that fuses
into a c . Note that possible mismatches between allowed
topological charges and stable quasiparticle species are a
feature of all topological states. For instance, in the
� ¼ 1=3 Laughlin state [40], the charge 2e=3 quasihole
carries an allowed value of topological charge, but it is not
an energetically stable excitation (for Coulomb interac-
tions); if we attempt to create one, it will decay into two
charge e=3 quasiholes. Similarly, we must consider the
possibility that a neutral c quasiparticle will simply decay
into a charge �e=4 � quasihole-quasiparticle pair that
fuses into the c channel. In this case, �F ¼ Eodd � Eeven

would be identified with �c and would provide a lower
bound for �c . However, since we find �F � 0:027 and

previous studies [13] obtained �c � 0:029, we tentatively
conclude that the neutral fermion is stable (at least against
this decay channel) and has

�F ¼ Eodd � Eeven � 0:027: (4)

Stronger evidence supporting this interpretation comes
from the good fit of our data to the Ne odd case of
Eq. (2). If the neutral fermion were unstable, there would
be a �1=32

ffiffiffiffiffiffi
Ne

p
term in the Ne odd energies, resulting

from the Coulomb interaction between�e=4 charges [30].
For comparison, we note that a similar computation of

the neutral fermion gap for the � ¼ 1=3 Laughlin state [40]
would give the value zero because the even- and odd-
electron number ground-state energies lie on the same
line [13]; since it is not a paired state, there is no qualitative
difference between even and odd-electron numbers. On the

other hand, the Pf state, the (3, 3, 1) state [41] and the
Bonderson-Slingerland (BS) states [42] have neutral

fermionic excitations whose gaps can be computed by
the method explained in this Letter. In the absence of
Landau-level mixing, �F is expected to be precisely the

same for the Pf state as it is for the MR state; preliminary
calculations are consistent with this [37]. In the case of the
k � 3 Read-Rezayi states [43], there are neutral excita-
tions that are non-Abelian and, therefore, cannot be ob-
tained by simply altering Ne and N�.

Although the neutral fermion gap has not been previ-
ously calculated, a related quantity has recently been cal-
culated, namely, the splitting between the two degenerate
states that occur for four e=4� quasiparticles [44]. This
splitting, �EðrÞ, decays with distance r between the �

quasiparticles as �EðrÞ � fðrÞe�r=� for large r. Here,
fðrÞ is an oscillatory function and � is the characteristic
length scale for the decay. If we interpret this splitting as
the energy associated with interquasiparticle tunneling of
neutral fermions, then we expect � ¼ �F ¼ v=�F, where
v is the velocity of a neutral fermion. If the � ¼ 5=2 state is
interpreted as a paired state with small gap, then v would
be the Fermi velocity vF of the underlying Fermi-liquid-
like metallic state. In such a case, the Fermi velocity could
be deduced by studying the spectrum of a single neutral
fermion as follows. For odd Ne, the energy spectrum will
not have a gap above the lowest energy state (in the
thermodynamic limit) since there will be one unpaired
neutral fermion above the Fermi energy, and this fermion
can be excited to any other state above the Fermi energy. In
a BCS mean-field theory, the energy spectrum for odd Ne

will be bounded below by the curve EL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2L þ�2

F

q
þ

Eg:s: � 1
2�F

�2L þ �F þ Eg:s:, where Eg:s: is the ground-state

energy for Ne � 1 electrons, �L is a single-particle energy
relative to the Fermi energy for a state with angular mo-
mentum L. We take �L ¼ vF

N�‘0
½LðLþ 1Þ � L0ðL0 þ 1Þ�,

where L0 is the highest occupied angular momentum orbi-
tal. Thus, for L � L0, the excitation energies are expected
to be quadratic in L� L0:

EL � 1

2�F

�
vFð2L0 þ 1Þ

N�‘0

�
2ðL� L0Þ2 þ const: (5)

As may be seen in Fig. 3, the lowest excitation energies for
Ne ¼ 9, 11, 13, 15 appear to follow a parabola. A linear
extrapolation of the vF values obtained from these spectra
according to Eq. (5) gives vF � 0:021e2=", which leads to
�F � 0:8‘0. However, the parabolic fit is quite poor for
N ¼ 13; the other three system sizes are consistent with
vF � 0:035e2=", or �F � 1:3‘0. For comparison, we note
that a length scale � � 2:3‘0 was found in [44], though
they use much larger system sizes and trial wave functions,
rather than the Coulomb ground state.
Our results imply that a quantum computer based on a

possible Ising-type state at � ¼ 5=2 should be operated at
temperatures much lower than �F, which is � 3:4 K for a
magnetic field B ¼ 6:5 T. This implies that, at 35 mK, the
error rate due to thermally excited neutral fermions is

�e��F=T � 10�44 if the computational anyons are further
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than �F � 130 �A from each other and the edge. However,
there may be other potential sources of error. Furthermore,
as a result of disorder, the neutral fermion gap may locally
be smaller than �F, thus increasing the error rate. In the
experiments of Willett et al. [16], the interquasiparticle
distances are probably comparable to �F; this implies that
the error rate may be large and there is probably significant
splitting between the 2n�1 states expected for 2n quasipar-
ticles [45]. By measuring the time over which the signal
through an interferometer remains stable, it should be
possible to measure the error rate and, thereby, �F. In
addition, bulk thermal transport may be dominated by
thermally excited neutral fermions. Although charge e=4
quasiparticles may have a smaller energy gap (approxi-
mately half that for a neutral fermion), they will be much
more strongly localized by disorder than neutral fermions.

Finally, we note that �F � 0:027 e2

"‘0
is small compared

to the Coulomb energy. For purposes of comparison, we
consider the neutral fermion gap for a Hamiltonian in
which the only interaction is the (repulsive) three-body
interaction for which the MR wave functions are the exact
ground states [8,19]. For this Hamiltonian, the ground-state
energy is precisely zero for Ne even, so Eeven ¼ 0. Thus,
we must only compute the lowest state energies forNe odd.
We note that these states occur at different values of the
angular momentum than for Coulomb interactions, perhaps
because the precise shape of the Fermi surface (which may
be quite irregular for some Ne for these system sizes) is
different for these two Hamiltonians—a nonuniversal but
quantitatively important effect. A simple linear extrapola-
tion of these energies gives �F ¼ Eodd � 0:45, if the co-
efficient of the three-body interaction is 1. Thus, there is
nothing wrong in principle with the naı̈ve idea that the
superconducting gap can be comparable to the Coulomb
energy scale for an electronic pairing mechanism, so long
as there are no nearby competing phases [8] to suppress it.

We thank M. Hastings, M. Peterson, and
E. Rezayi for helpful discussions and the Aspen Center for

Physics for hospitality. A. F. is supported by the NSF grant
DMR-0955707 and C.N. by the DARPA-QuEST program.

[1] R. Willett et al., Phys. Rev. Lett. 59, 1776 (1987).
[2] W. Pan et al., Phys. Rev. Lett. 83, 3530 (1999).
[3] J. P. Eisenstein et al., Phys. Rev. Lett. 88, 076801 (2002).
[4] A. Y. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003).
[5] M.H. Freedman, Proc. Natl. Acad. Sci. U.S.A. 95, 98

(1998).
[6] C. Nayak et al., Rev. Mod. Phys. 80, 1083 (2008).
[7] R. H. Morf, Phys. Rev. Lett. 80, 1505 (1998).
[8] E. H. Rezayi and F. D.M. Haldane, Phys. Rev. Lett. 84,

4685 (2000).
[9] A. E. Feiguin et al., Phys. Rev. B 79, 115322 (2009).
[10] M. R. Peterson, T. Jolicoeur, and S. Das Sarma, Phys. Rev.

Lett. 101, 016807 (2008).
[11] W. Bishara and C. Nayak, Phys. Rev. B 80, 121302 (2009).
[12] E. H. Rezayi and S. H. Simon, arXiv:0912.0109.
[13] A. E. Feiguin et al., Phys. Rev. Lett. 100, 166803 (2008).
[14] I. Radu et al., Science 320, 899 (2008).
[15] M. Dolev et al., Nature (London) 452, 829 (2008).
[16] R. L. Willett et al., Proc. Natl. Acad. Sci. U.S.A. 106, 8853

(2009).
[17] A. Bid et al., Nature (London) 466, 585 (2010).
[18] G. Moore and N. Read, Nucl. Phys. B360, 362 (1991).
[19] M. Greiter et al., Nucl. Phys. B374, 567 (1992).
[20] S.-S. Lee et al., Phys. Rev. Lett. 99, 236807 (2007).
[21] M. Levin, B. I. Halperin, and B. Rosenow, Phys. Rev. Lett.

99, 236806 (2007).
[22] M. Dolev et al., Phys. Rev. B 81, 161303 (2010).
[23] M. Stern et al., Phys. Rev. Lett. 105, 096801 (2010).
[24] T.D. Rhone et al., arXiv:1011.3857.
[25] C. Toke, N. Regnault, and J. K. Jain, Phys. Rev. Lett. 98,

036806 (2007).
[26] E. Prodan and F.D.M. Haldane, Phys. Rev. B 80, 115121

(2009).
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