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The degree of electron correlations remains a central issue in the iron-based superconductors. The

parent iron pnictides are antiferromagnetic, and their bad-metal behavior has been interpreted in terms of

proximity to a Mott transition. We study such a transition in multiorbital models on modulated lattices

containing an ordered pattern of iron vacancies, using a slave-rotor method. We show that the ordered

vacancies lead to a band narrowing, which pushes the system to the Mott insulator side. This effect is

proposed to underlie the insulating behavior observed in the parent compounds of the newly discovered

ðK;TlÞyFexSe2 superconductors.
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Introduction.—Superconductivity in the layered iron
pnictides and chalcogenides occurs near antiferromagneti-
cally ordered parent compounds [1–3]. In their paramag-
netic phase, these parent materials have a large electrical
resistivity corresponding to an in-plane carrier mean-free
path on the order of the inverse Fermi wave vector. They
also show a strong reduction of the Drude weight [4], and
temperature-induced spectral weight transfer that extends
to high energies (on the eV order) [5–7]. Such bad-metal
behavior is characteristic of metallic systems in proximity
to a Mott transition [8–10]

Recently, superconductivity has been discovered in a
new family of iron-based compounds KyFe2Se2 [11] and

related ðK;TlÞFexSe2 [12]. In these compounds the maxi-
mal superconducting transition temperature is comparable
to that of the 122 iron pnictides. Similarly to the pnictides,
the superconductivity occurs close to an antiferromagneti-
cally ordered state [12]. At the same time, these materials
are unique in several aspects. Both the angle-resolved
photoemission (ARPES) experiments [13–15] and local
density approximation (LDA) calculations [16] show that
the Fermi surface has only electron pockets. The absence
of hole Fermi pockets is unique among the iron-based
superconductors, raising hope for major new and general
insights to be gained from studying these materials.
Equally important, the Fe vacancies may form ordered
patterns when the Fe content x & 1:6 as suggested by
various experiments [12,17,18]. Furthermore, there are
parent compounds which are insulating [12,19]. The con-
trol parameter that tunes the ðK;TlÞFexSe2 system from
superconducting to insulating is the Fe composition x, and
x ¼ 1:5 is the primary candidate composition for a parent
compound. There is evidence [12,17] that in
ðK;TlÞFe1:5Se2 the Fe vacancies form regular patterns
possibly as illustrated in either Fig. 1(b) or Fig. 1(c).
The in-plane electrical resistivity is about 2 orders of
magnitude larger than that of the parent iron pnictides at
room temperature, and it further increases exponentially as

temperature is lowered. The insulating behavior is also
manifested in the optical conductivity [20], which is
strongly suppressed below about 0.7 eV. Because of ex-
perimental indications that the (K,Tl) content is also vari-
able, we will in the following refer to these systems as
ðK;TlÞyFexSe2.
In this Letter, we propose that the parent ðK;TlÞyFe1:5Se2

is a Mott insulator arising from a correlation effect that is
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FIG. 1 (color online). (a) Square lattice, L1. Different clusters
are used and will be labeled as Nc ¼ 1, 2, and 4, respectively;
(b) Modulated 2� 2 square lattice, L2. The enclosed sites 1, 2, 3
form the basis of the unit cell; (c) Another modulated 2� 2
lattice, L3 (corresponding to a 4� 2 superstructure in the FeSe
plane). Also shown are the bare density of states (DOS) for the
one-orbital model (t ¼ t0 ¼ 1) (d) and the two-orbital model (e).
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enhanced by the Fe vacancies. We describe the ordered Fe
vacancies in terms of a modulated lattice, and introduce a
two-orbital model with two electrons per Fe site to capture
their electronic structure. We use a slave-rotor method to
show that a Mott transition exists in this model even though
there are an even number of electrons per site (and per unit
cell). We find that the interaction strength for the Mott
transition largely tracks the electronic bandwidth. In other
words, ordered Fe vacancies enhance the tendency towards
Mott localization as a result of a kinetic-energy reduction.
Such Fe vacancies, therefore, have a similar effect as a
lattice expansion, which we have previously discussed as
responsible for the Mott insulating behavior in
La2O3Fe2Se2 [21]. Our considerations of the interaction
effects are realistic, given that the ab initio calculations
using density-functional theory [22] show that the 3d
bands of TlFe1:5Se2 are narrower than those of TlFe2Se2.

Modulated lattices and kinetic-energy reduction.—We
will consider a square lattice [L1, Fig. 1(a)], a modulated
square lattice consisting of 2� 2 plaquettes each having its
center removed [L2, Fig. 1(b)], and another one corre-
sponding to a triangular lattice of such 2� 2 plaquettes
[L3, Fig. 1(c)].

The ðK;TlÞyFexSe2 system involves all five 3d orbitals.

The ARPES experiments [13–15] show electron pockets
near the M point and suggest very weak electronlike
pockets near the � point. The absence of a hole pocket
near the � point is largely consistent with the ab initio
electronic band structure calculations using LDA for
ðK;TlÞFe2Se2 [16,23–26]. This is in contrast to the case
of iron pnictides, and is easier to model using a two-orbital
tight-binding parametrization. Correspondingly, we con-
sider a two-orbital model with the degenerate xz and yz
orbitals (labeled as orbitals 1 and 2) and n ¼ 2. Inspired by
the considerations in the pnictides case [27,28], we intro-
duce a set of tight-binding parameters. The parameters are
listed in Table I, and their meanings can be inferred from
the dispersion functions specified in Eq. (2). We first fit the
LDA band structure obtained on TlFe2Se2 to this two-
orbital model and then adjust the tight-binding model
parameters so that the Fermi surface still has only electron
pockets at n ¼ 2. We notice that the Fermi surface size is
larger than in the band structure calculations, but this
suffices for our qualitative considerations of the effect of
lattice depletion on the Mott transition. What is important
is that, for our parameters, the Fermi surface comprises
only electron pockets near the X points of the 1-Fe per cell
Brillouin zone. The bandwidth narrowing for L2 and L3
lattices compared to the L1 lattice is shown in Fig. 1(e).

Two-orbital model and the slave-rotor method.—We are
now in position to specify our model,

H ¼ � X

ij;��;�
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where ci�� annihilates an electron in orbital � and spin �
on site i of the Fe lattice. The first term in Eq. (1) describes
the electron hopping, with orbital dependent hopping am-

plitudes t��ij ¼ t1; t2; . . . ; t12 yielding
P

k����
��
k� c

y
k��ck��,

where

�11k ¼ �2t1 coskx � 2t2 cosky � 4t3 coskx cosky

� 4t9 cos2kx cos2ky;

�22k ¼ �2t2 coskx � 2t1 cosky � 4t3 coskx cosky

� 4t9 cos2kx cos2ky;

�12k ¼ �21k ¼ �4t4 sinkx sinky � 4t12 sin2kx sin2ky:

(2)

Small hoppings t9 and t12 between the 5th-nearest neigh-
bors are included to reproduce the two electron pockets at
n ¼ 2. The second term in Eq. (1) is an on-site Coulomb
repulsion. We focus on the effect of lattice depletion on the
Mott transition and will not consider Hund’s coupling and
pair-hopping terms for simplicity. All local interactions are
expected to have effects similar to U. In particular, the
Hund’s coupling will reduce the critical U of the Mott
transition; its effects are readily studied within a slave-
spin method [29,30], and the results will be reported
elsewhere.
We study the model using the cluster slave-rotor mean-

field (CSRMF) method [31,32]. We introduce an Oð2Þ
rotor variable �i and a spinon fi�� on each site, and write
ci�� ¼ fi��e

�i�i . Here, e�i�i lowers the rotor angular
momentum Li, which corresponds to the charge quantum
number. The unphysical states are eliminated by enforcing

the constraint Li ¼
P

��ðfyi��fi�� � 1=2Þ in the enlarged
rotor and spinon Hilbert space. By rewriting Eq. (1) using
rotor and spinon operators and decoupling the rotor and
spinon operators at the mean-field level, we obtain the
following two effective Hamiltonians:

Hf ¼ � X
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y
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where Cij � heið�i��jÞi� is the rotor correlation function

that renormalizes the quasiparticle hopping parameters in

the presence of interaction, ���
ij � hfyi��fj��if, � is the

chemical potential, and � is a Langrange multiplier to
impose the constraint. To solve these two Hamiltonians,
which still contain interactions among rotors, we further
apply a cluster mean-field approximation. We exactly di-
agonalize the rotor Hamiltonian on a finite cluster, and
treat the influence of the sites outside the cluster as a

mean field. We decouple eið�i��jÞ into ei�i	j if i belongs

TABLE I. Hopping parameters of the two-orbital model.

Intraorbital (eV) Interorbital (eV)

t1 t2 t3 t9 t4 t12
0.093 0.081 �0:222 �0:038 0.023 -0:038
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to the cluster but j is outside. Here	i � he�i�ii is the local
mean-field parameter. Consequently, Cij is factorized as

Cij � 	�
i 	j if either i or j is outside the cluster. In prac-

tice, Eqs. (3) and (4) are self-consistently solved by iter-
atively determining the mean-field parameters 	i, Cij, and

���
ij . The Mott transition is signaled by a vanishing quasi-

particle spectral weight Zi ¼ j	ij2.
To gain intuition on the role of the lattice modulation, we

will also study a one-orbital model with nearest-neighbor
hopping, t, and next-nearest-neighbor hopping, t0.
Figure 1(d) illustrates the reduction of the bandwidth for
L2 and L3 lattices from that of the L1 lattice, for the case
of t0 ¼ t. A nonzero t0 is chosen for two reasons. It avoids a
perfect nesting in the case of n ¼ 1, which we study below.
It also avoids a flat band in the case of the L2 lattice: when
t0 ¼ 0, for the L2 lattice, there are two dispersive bands

with a combined bandwidth of 4
ffiffiffi
2

p
t, and a flat band in the

middle.
Results for the one-orbital model.—We start from the

one-orbital case. Because the L2 and L3 lattices involve a
2� 2 square plaquette as the unit cell, wewill carry out our
calculations for the lattice L1withNc ¼ 4. The slave-rotor
mean-field theory treats the rotor kinetic energy for intra-
cluster bonds exactly by diagonalizing the rotor
Hamiltonian on the cluster. Hence working with Nc ¼ 4
gives a better description of the Mott transition than using
the single site approximation. Figure 2(a) shows the re-
normalized quasiparticle weight, Z, as a function of U=t.
The Mott transition occurs at Uc, where Z first goes to zero
as U is increased. For the L1 lattice, increasing the cluster
size fromNc ¼ 1 toNc ¼ 4 leads to a successive reduction
of Uc: Uc � 8t for Nc ¼ 1, and Uc � 7:2t for Nc ¼ 4.

On the modulated lattices, we also find a Mott transition.
It is seen that Uc � 5:4t for the L2 lattice and Uc � 5:8t
for L3 lattice; both are smaller than that of the L1 lattice.

Figure 2(b) plots the same result, but with U now
normalized against the full bandwidth D. It is seen that
Uc=D is comparable for all three cases. This clearly illus-
trates that the reduction ofUc for the modulated L2 and L3
lattices arises from the band-narrowing effect.

Results for the two-orbital model.—We now turn to the
more realistic two-orbital case. The renormalized

quasiparticle weight as a function of U=t1 is shown in
Fig. 3(a). It is again seen that the values of Uc for both
the L2 and L3 lattices are smaller than that of the L1 lattice
with Nc ¼ 4.
One difference from the toy one-orbital model is that the

hopping parameters in the two-orbital model are highly
anisotropic (e.g., jt3=t2j � 3), which makes the local en-
vironment possibly different from site to site on the modu-
lated lattices. To fully address the influence of the
inhomogeneity, we study the quasiparticle weight associ-
ated with each site in the cluster Zi. For either L1 or L3, we
obtain a single Mott transition as in the one-orbital case.
For the L2 lattice, we find two transitions. They are iden-
tified by the vanishing of Z3 first at Uc1=t1�17, and
subsequently the vanishing of Z1 (and, equivalently, Z2)
at a higher value Uc2=t1 � 20.
To understand this, we have in the same figure plotted

the bond correlators C12 and C13. Between Uc1 and Uc2,
C13 vanishes but C12 remains finite. This makes site 3
unconnected to the rest of the lattice [cf. Fig. 4(b)]. We
see these explicitly in a plot of the renormalized band
structure in Fig. 4(d): associated with the isolated 3 sites
is a flat band lying exactly on the Fermi level for Uc1 <
U<Uc2. By contrast, for U <Uc1, all sites are connected
by hopping terms [Fig. 4(a)] and there exists no flat band
[Fig. 4(c)].
For the L3 lattice, the geometry prevents the separation

of any site from the rest of the bulk unless all the effective
hopping parameters are zero. As a result, there will be only
one transition. This is clearly seen in comparing Z1 and Z3

in Fig. 3(d).
The quasiparticle weight as a function of U=D is shown

in Fig. 3(b). It is again seen thatUc=D is comparable for all
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FIG. 2 (color online). Quasiparticle weight for the one-orbital
model in the unmodulated and modulated lattices plotted as a
function of U=t (a) and U=D (b).
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three cases. As in the one-orbital case, this illustrates that
the reduction of Uc for the modulated lattices originates
from the band-narrowing effect.

Implications for ðK;TlÞyFexSe2.—Our results imply that

the critical interaction strength for the Mott transition will
be smaller in ðK;TlÞyFexSe2 than in iron arsenides and 11

iron chalcogenides. This provides the basis for a Mott-
insulating state in the parent ðK;TlÞyFexSe2, even when

one assumes the same strength of Coulomb interaction
across all families of iron-based superconductors.

The Mott-insulating nature of the parent ðK;TlÞyFexSe2
is supported by experiments. As already mentioned, the
materials for both x ¼ 1:5 and x ¼ 1:64 have a large
electrical resistivity with an insulating temperature depen-
dence [12,19]. Furthermore, the insulating behavior in the
electrical resistivity is already observed in the paramag-
netic phase. Relatedly, the optical conductivity is not only
strongly suppressed below about 0.7 eV, but also small in
magnitude. For reference, the value of the optical conduc-
tivity is comparable to that of the insulating YBa2Cu3O6þx

with a slight off-stoichiometry x ¼ 0:2 [33]. Finally, mag-
netic order is known to exist in TlFexSe2 at x close to 1.5
[34]. Taken together, these experiments suggest that the
insulating state is of the Mott type.

We note that in compounds with Fe content close to
x¼1:6, the ordered vacancies have a different pattern
[12,18]. However, because we have shown that the Mott
localization is a result of vacancy-ordering induced band
narrowing, our argument will also apply to these systems.

Band narrowing is expected on the grounds of general
considerations given here, and can also be seen in the
LDA results [22].
To summarize, we have used a two-orbital model in

1=4-depleted lattices to demonstrate that ordered vacancies
enhance the tendency for Mott transition, and that this
enhancement originates from a vacancy-induced kinetic-
energy reduction. Our qualitative conclusion is expected to
apply to the more realistic five-orbital model. Based on our
calculations, we propose that the insulating parent of the
ðK;TlÞyFexSe2 superconductors is a Mott insulator at am-

bient pressure.
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