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We study soliton oscillations in a trapped superfluid Fermi gas across the Bose-Einstein condensate to

Bardeen-Cooper-Schrieffer (BEC-BCS) crossover. We derive an exact equation for the oscillation period

in terms of observable quantities, which we confirm by solving the time-dependent Bogoliubov–de

Gennes equations. Hence we reveal the appearance and dynamics of solitons across the crossover, and

show that the period dramatically increases as the soliton becomes shallower on the BCS side of the

resonance. Finally, we propose an experimental protocol to test our predictions.
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Solitons have been the focus of much recent research in
the field of cold atoms, due to their ubiquitous production
in the dynamics of Bose-Einstein condensates (BEC)s [1].
Their different forms create a broad family, from the
common ‘‘gray’’ and ‘‘black’’ solitons in repulsive BECs,
to the ‘‘bright’’ solitons in attractive BECs and ‘‘gap’’
solitons in optical lattices, and their more exotic cousins
such as the ‘‘bright-dark’’ solitons, which were recently
observed in two-component BECs [2,3]. We expect soli-
tons to play an equally important role in the dynamics of
degenerate Fermi gases. Even more fundamentally,
topological excitations offer insights into the nature of
coherence and superfluidity across the BEC to Bardeen-
Cooper-Schrieffer (BEC-BCS) crossover, as illustrated by
the recent observation of vortex lattices [4]. Despite this
interest, the nature of soliton dynamics in Fermi gases
remains elusive, and only stationary ‘‘black’’ solitons
have been simulated across the BEC-BCS crossover [5].

In this Letter, we investigate the oscillation of solitons in
a harmonic trap. From fundamental statements about the
nature of the soliton and the media it moves in, we derive
universal relations, valid for both bosonic and fermionic
superfluids, relating the soliton energy and oscillation pe-
riod Ts to observable quantities such as phase jump, speed,
and density. The special case of unitarity is particularly
interesting because the soliton width is of the order of
interatomic distances and its observation will give access
to the short-range physics. We then perform numerical
simulations of the time-dependent Bogoliubov–de
Gennes (TDBdG) equations [6]. By extracting the appro-
priate observable quantities from our simulations we find
good agreement between the numerical and analytic mod-
els, which show that Ts increases dramatically as the
soliton becomes shallower when moving from a BEC to
a BCS regime. Finally, we propose and simulate an experi-
mental protocol to demonstrate the variation in Ts across
the BEC-BCS crossover.

General theory.—Let us consider a soliton in a super-
fluid gas, which may be either bosonic or fermionic,

confined in an elongated trap with axial potential UðxÞ ¼
m!2

xx
2=2, in which m is the atomic mass and !x is the

angular frequency. We assume that the width of the cloud
in the axial direction is large compared to the size of the
soliton. Then, in a local density approximation, the soliton
can be treated as a pointlike particle at position X; its
dynamics can be formulated in terms of the soliton energy
in a uniform fluid Esð�;V2Þ, where � is the chemical
potential of the fluid and V ¼ dX=dt is the soliton velocity.
Furthermore, we may say that �ðXÞ ¼ �ð0Þ �UðXÞ. We
define the inertial mass mI ¼ 2@Es=@V

2 and the num-
ber Ns ¼ �@Es=@� ¼ R1

�1½n1dðxÞ � n1d0�dx, in which

n1dðxÞ is the one-dimensional density and n1d0 is the bulk
density far from the soliton. The quantity Ns is the deficit
of particles associated with the depression in density at the
soliton position. Note that typically mI < 0 and Ns < 0.
Then energy conservation in the absence of dissipation
gives [7,8]

dEs

dt
¼ @Es

@�ðXÞ
d�ðXÞ
dX

dX

dt
þ @Es

@V2

dV2

dV

dV

dt
¼ 0; (1)

and hencemIðdV=dtÞ ¼ �NsðdU=dXÞ ¼ �Nsm!2
xX. For

small amplitude oscillations, the soliton period is

Ts ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mI=Nsm

q
Tx; (2)

where Tx ¼ 2�=!x, and mI and Ns are taken for V ! 0.
The key to our analytic treatment of solitons is to

recognize the distinction between the ‘‘physical’’ momen-
tum of the soliton Ps ¼ m

R1
�1 jdx, associated with the

current j carried by the wave function, and the canonical
momentum of the soliton Pc. By performing a Galilean
transformation into the frame of the soliton moving
at velocity V, we find the current in the soliton frame
�j ¼ j� n1dV. Since �j ¼ �n1d0V, we derive

Ps ¼ mV
Z 1

�1
½n1dðxÞ � n1d0�dx ¼ mVNs: (3)
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The canonical momentum of the soliton is instead defined
by V ¼ @Es=@Pc. It follows that

@Pc

@V
¼ 1

V

@Es

@V
¼ 2

@Es

@V2
¼ mI: (4)

The momenta Ps and Pc are different because, despite
being a localized object from the point of view of the density
profile and the velocity field, the soliton creates a jump J’ in
the phase ’ of the order parameter. This phase jump is
exploited when creating solitons in experiment with the
‘‘phase imprinting’’ technique [3,9–11]. In any real experi-
ment, where the soliton is created by a localized perturba-
tion, this phase difference will be compensated by a
‘‘counterflow,’’ which carries an additional momentum
�P. The difference between Ps and Pc was first found in
a BEC described by the Gross-Pitaevskii (GP) equation
[12], and its meaning was discussed in Ref. [13]. Far
from the soliton we may say that the velocity field is v ¼
@r’=mB, in which mB ¼ m for bosons and mB ¼ 2m
for fermions. Hence we find �P ¼ n1d0m

R
vdx ¼

@n1d0J’m=mB, and [14]

Pc ¼ Ps þ �P ¼ Ps þ @n1d0J’m=mB: (5)

Taking into account that V ¼ 0 for J’ ¼ �, and using

Eqs. (3) and (4), we obtain the important relation [15]

mNsV � 2
Z V

0

@Es

@V2
dV ¼ �"n1d0ðJ’ � �Þm=mB: (6)

We then differentiate with respect to V to derive

m
dðNsVÞ
dV

�mI ¼ � @n1d0m

mB

dJ’
dV

: (7)

Substituting mI using Eq. (2), for V ! 0 we obtain�
Ts

Tx

�
2 � 1 ¼ @n1d0

mBNs

dJ’
dV

: (8)

Note that Eq. (8) contains only quantities which can be
directly measured in numerical and real experiments. We
stress that the basic assumptions used to derive this result
are the absence of dissipation and the existence of an order
parameter obeying Galilean invariance.

Bogoliubov—de Gennes simulations.—To test Eq. (8),
we model the dynamics of a three-dimensional (3D) su-
perfluid Fermi gas by solving the TDBdG equations [6]

Ĥ �ðr; tÞ
��ðr; tÞ �Ĥ

" #
u�ðr; tÞ
v�ðr; tÞ

" #
¼ i@

@

@t

u�ðr; tÞ
v�ðr; tÞ

" #
; (9)

where Ĥ ¼ �@
2r2=2mþU��ð0Þ and the order pa-

rameter � is calculated as � ¼ �g
P

�u�v
�
�, in which g

is given by 1=kfa ¼ 8�Ef=gk
3
f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ec=�

2Ef

q
[16]. Here

a is the 3D s-wave scattering length characterizing the
interaction between atoms of different spins, while Ef ¼
@
2k2f=2m and kf ¼ ð3�2nÞ1=3 are the Fermi energy and

momentum of an ideal Fermi gas of density n. The cutoff

energy Ec is introduced in order to remove the ultraviolet
divergences in the TDBdG equations with contact poten-
tials. The density of the gas is nðr; tÞ ¼ 2

P
�jv�ðr; tÞj2.

Since the potential U has no y or z dependence, we write

the BdG eigenfunctions as u�ðrÞ ¼ u�ðxÞeiðkyyþkzzÞ and

v�ðrÞ ¼ v�ðxÞeiðkyyþkzzÞ, in which ky and kz are quantized

according to ky ¼ 2��y=L? and kz ¼ 2��z=L?, where
�y and �z are integers and L? is the width of the box in the

y and z directions.
As initial states at t ¼ 0, we find stationary solutions of

Eq. (9). This has been done to investigate stationary black
solitons across the BEC-BCS crossover [5]. We use the
same technique to generate momentarily stationary soli-
tons away from the trap center. When such an initial state is
evolved in time, the black soliton is accelerated by the trap
potential, and becomes gray.
Figure 1 presents three typical simulations of the TDBdG

equations. Panel (a) shows a soliton oscillating in the density
profile of a 40K superfluid for 1=kfa ¼ �0:5, with !x ¼
2�50 rad s�1, L? ¼ 3:3 �m, and a peak density np ¼
1:8� 1018 m�3 ¼ n1dð0Þ=L2

?. Panel (b) is an enlargement

of the central region of panel (a) contained within the dashed
white box. Panels (c) and (d) are equivalent enlargements for
1=kfa ¼ 0 and 1, respectively. We take Ec ¼ 30Ef (Ec ¼
50Ef) for 1=kfa < 0 (1=kfa � 0). For 1=kfa ¼ �0:5

[Figs. 1(a) and 1(b)], the soliton creates a shallow depression
in the density of the cloud, on either side of which are
smaller oscillations, known as Friedel oscillations. We also
plot the real part j<ð�Þj and imaginary part j=ð�Þj of the

(a) (b)

2

1

/
x

30 m

0

(c) (d)
x

10 m 10 m 10 m

FIG. 1. (a) Soliton oscillating in the density profile of
a 40K superfluid for 1=kfa ¼ �0:5 with !x ¼ 2�50 rad s�1,

L? ¼ 3:3 �m, and a peak density np ¼ 1:8� 1018 m�3.

(b) Enlargement of region contained within the dashed white
box in (a). (c),(d) Corresponding enlargements for 1=kfa ¼ 0:0

and 1.0. Left and right insets in (b), (c), and (d) show the real part
j<ð�Þj and imaginary part j=ð�Þj of the order parameter in the
regions contained within the dotted white boxes.
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order parameter in the region contained within the dotted
white box in Fig. 1(b) as left and right insets, respectively.
Initially j=ð�Þj is zero, indicating that J’ ¼ �. As the

soliton accelerates, the density depression becomes shal-
lower, j=ð�Þj increases from zero, and J’ reduces. The

insets also show that both j<ð�Þj and j=ð�Þj contain
Friedel oscillations in the vicinity of the soliton [17], as in
the density profile. This is in contrast to solitonic solutions
of the GP equation, which always have a constant imaginary
component of the order parameter [18].

As 1=kfa increases, the profile of the solitons in n and�

tends to that of GP solitons. At unitarity [Fig. 1(c)], the
Friedel oscillations are barely visible in n, but j=ð�Þj (right
inset) still contains a small dip at the position of the soliton.
When 1=kfa reaches 1.0 [Fig. 1(d)], j=ð�Þj (right inset) is
almost constant across the cloud. We also observe that the
density depression becomes deeper. For 1=kfa ¼ 1:0, the

density minimum in the soliton is close to zero when it is
stationary at the apex of an oscillation.

Figure 1 also illustrates that the period Ts decreases as
we move from the BCS to the BEC regime. This effect is
quantified in Fig. 2(a), which plots Ts against 1=kfa. The

graph shows that Ts drops rapidly as we move from the
BCS to unitary regimes, before tending to the GP predic-

tion of
ffiffiffi
2

p
Tx [19] in the BEC limit of large 1=kfa. Our

prediction of Ts ¼ ð1:7� 0:05ÞTx at unitarity is consistent

with the value of
ffiffiffi
3

p
Tx given in Ref. [17]. It is computa-

tionally difficult to reach convergence for large 1=kfa,

because a large number of states must be included in order
to describe the formation of Bosonic molecules. To illus-
trate the gradual convergence towards the GP prediction,
we plot three points for 1=kfa ¼ 1 with Ec ¼ 50Ef, 75Ef,

and 100Ef, with a light gray, dark gray, and black cross,

respectively. We also note that Ts for 1=kfa ¼ �0:5 is

lower than expected by looking at the general trend. This
occurs because the pair size is becoming comparable with
the width of the cloud.

To compare the numerical results with the prediction of
Eq. (8), we must also calculate Ns and dJ’=dV. The

quantity Ns may be determined from stationary solutions

of Eq. (9). We plot results in Fig. 2(b) as a function of
1=kfa. The graph shows that Ns increases monotonically

with 1=kfa, reflecting that the soliton becomes much

deeper while its width remains almost the same [5].
We determine dJ’=dV by measuring V and J’ as the

soliton passes the center of the trap. In the inset in Fig. 3,
we plot results for 1=kfa ¼ �0:25, 0, and 1.0, with a

triangle, circle, and plus sign, respectively. As expected,
the result for 1=kfa ¼ 1 lies close to the GP prediction [18]

(black line) for a ¼ 1=kf and small V, which is

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�@2np=4kfm

2
q

ð�� J’Þ: (10)

Surprisingly, the results for 1=kfa ¼ �0:25 and 0 also lie

near the black line. The variation in dJ’=dV is comparable

to the error in our simulations so, to a good approximation,
we may take dJ’=dV to be a constant, given by Eq. (10).

Given this and mB ¼ 2m, Eq. (8) becomes

ðTs=TxÞ2 � 1 ¼ �ð3=�Þ1=6L2
?n

2=3
p =Ns: (11)

In Fig. 3 we plot Eq. (11) (solid line) together with the
numerical results (crosses); the two predictions agree
within the accuracy of our TDBdG simulations. Figure 3
illustrates that the shallow solitons in the BCS regime
accelerate slower than the deep solitons in the BEC regime.
In the former case, jNsj is smaller, since more particles
(unpaired fermions) are present inside the soliton.
According to Eq. (11), this implies a larger Ts, in agree-
ment with our numerical simulations. This is analogous to
the increase in the period of dark solitons when they are
filled by an impurity, creating bright-dark solitons [2,3].
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FIG. 2. Ts (a) and Ns (b) plotted against 1=kfa. We find that
Ts ¼ 1:7Tx at unitarity. White (light gray, dark gray, black)
crosses denote data for Ec ¼ 30Ef (50Ef, 75Ef, 100Ef). Ns is

calculated for transverse width L? ¼ 3:3 �m.
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FIG. 3. ½ðTs=TxÞ2 � 1� plotted against 1=jNsj. White (light
gray, dark gray, black) symbols denote data for Ec ¼ 30Ef

(50Ef, 75Ef, 100Ef). Solid line shows the prediction of

Eq. (11). Inset shows V versus J’, with data points for 1=kfa ¼
�0:25 (triangle), 0 (circle), and 1.0 (plus sign). Solid line shows
the GP prediction for a ¼ 1=kf [Eq. (10)].
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Experimental protocol.—We propose an experiment to
observe the variation of Ts across the BEC-BCS crossover.
As in Fig. 1, we consider a 40K superfluid with !x ¼
2�50 rad s�1, L? ¼ 3:3 �m, and np ¼ 1:8� 1018 m�3.

We create a soliton dynamically, using techniques that
have been realized in experiment [9–11]. First, we create
a hole in the density of the initial state [Fig. 4(a)] by adding
a narrow potential spike at x ¼ 2:5 �m [20]. Second, at
t ¼ 0 the cloud at x < 2:5 (x > 2:5)�m is imprinted with a
phase of zero (�). The potential spike is then smoothly
ramped down to zero over 0.5 ms ( ¼ 0:025Tx) to mini-
mize sound production. We refer to this procedure as
protocol A. The procedure creates a black soliton plus
some sound [20]. Since we form the soliton away from
the center of the trap, it oscillates [Fig. 4(a)]. The ampli-
tude of the order parameter is not significantly affected
[Fig. 4(b)].

We now consider a second procedure, referred to as
protocol B. The soliton is created in the same way but,
from t ¼ 0 to 10 ms ( ¼ 0:5Tx), we ramp the scattering
length until 1=kfa ¼ �0:5. This reduces the speed and

depth of the soliton, and Friedel oscillations appear in the
density profile [Fig. 4(c)]. Also, the amplitude of the order
parameter reduces dramatically [Fig. 4(d)]. Unfortunately,
the soliton is now too shallow to be observed experi-
mentally, so we ramp back to 1=kfa ¼ 1 from t ¼ 16

(¼ 0:8Tx) to 26 ms ( ¼ 1:3Tx). The soliton now becomes
deeper again, the Friedel oscillations disappear [Fig. 4(c)],
and the order parameter increases [Fig. 4(d)]. By compar-
ing the position of the soliton following protocol B to that
following protocol A, the experimentalist may prove that
Ts has been increased.

Summary.—In this work, starting from very general
assumptions, we derive universal relations valid for both

bosonic and fermionic superfluids, relating the soliton
energy and oscillation period Ts to observable quantities.
Then we solve the TDBdG equations to test these relations
in a nontrivial theoretical model, and also to provide
numerical predictions for Ts in realistic conditions. Our
TDBdG simulations, although exceeding challenging, rep-
resent also a new opportunity to probe unknown dynamics
across the BEC-BCS crossover. We hope that our work, in
particular, our proposed protocol, will stimulate experi-
ments to test our predictions.
We thank J. Brand and R. Liao for fruitful discussions

and for sharing the preliminary results of their work [17].
We thank G. Watanabe for helpful discussions. After this
work was completed, we became aware of an independent
study of gray solitons in the BEC-BCS crossover with
stationary BdG equations [21].
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