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Saturation of the intensity dependence of the refractive index is directly computed from ionization rates

via a Kramers-Kronig transform. The linear intensity dependence and its dispersion are found to be in

excellent agreement with complete quantum mechanical orbital computations. Higher-order terms concur

with solutions of the time-dependent Schrödinger equation. Expanding the formalism to all orders up to

the ionization potential of the atom, we derive a model for saturation of the Kerr effect. This model widely

confirms recently published and controversially discussed experimental data and corroborates the

importance of higher-order Kerr terms for filamentation.
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Most nonlinear optical effects can be understood in
the perturbative limit with two or three interacting optical

waves, giving rise to contributions �ð2Þ
ij EiEj or �

ð3Þ
ijkEiEjEk

to the polarization P, respectively. Higher-order �ðnÞ
ðn � 4Þ terms can be formally considered. Yet, a perturba-
tive description of higher-order effects is rarely useful as
often enough a large number of waves interact simulta-
neously as, for example, in high-harmonic generation [1].

The role of �ð5Þ effects for arresting catastrophic optical
self-focusing has been discussed already more than 20

years ago [2–4]. �ð3Þ effects, namely, the all-optical Kerr
effect, give rise to an increase of the refractive index with
intensity n ¼ n0 þ n2I and a resulting focusing nonlinear

lens. A �ð5Þ dependence with negative sign and defocusing
nonlinear lensing would explain the phenomenon of fila-
mentation, i.e., the formation of long self-guided light
strings with nearly constant diameter. Early experimental
results indicated that filamentation cannot only be ex-
plained by plasma formation [5], which gives rise to a
negative index contribution suitably described by Drude
theory. Nevertheless, refined theoretical models succeeded
in explaining even complex experimental results without
the need for including a saturation of the Kerr effect [6,7].
Recently, this accepted picture was challenged by mea-
surements [8,9] that indicate yet again a strong influence
of higher-order nonlinearities to the extent that filament
formation is explained in the complete absence of plasma
formation. These results have been controversially
discussed [10,11]. In the following, we provide an inde-
pendent and previously unreported approach towards
computing Kerr saturation. Our approach is based on a
Kramers-Kronig (KK) transform [12] of optical absorption
derived from Keldysh theory [13]. This analysis supports
the experimental results in Ref. [8], indicating that we may
have in fact a paradigm shift in explaining femtosecond
filamentation [10].

Our model is based on a recent modification [13] of
Perelomov-Popov-Terent’ev (PPT) theory [14], the former
providing cross sections for multiphoton ionization (MPI)
according to
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for! � !p=K. Here! is the optical frequency, qe and me

denote electron charge and mass, respectively, �0 is the
vacuum dielectric constant, and c denotes vacuum light
speed. @!p is the ionization potential of the gas species

under consideration. The constant K ¼ h!p=!þ 1i
counts the number of photons required for ionization,
where hxi denotes the integer part of x. The effective
principal quantum number of the bound state is given by

n� ¼ Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!H=!p

q

, where @!H ¼ 13:6 eV is the Rydberg

energy and Z is the charge number of the ionic residuum.

The constantC ¼ 2n
��1=�ðn� þ 1Þ is related to the asymp-

totic expansion of the ground-state electronic wave func-
tion, and w0½x� denotes Dawson’s function [15]. From the
cross sections �K, the K-photon absorption coefficients
��K may then be calculated according to ��Kð!Þ ¼
K@!�nt�KI

K�1, with a particle density �nt ¼ 2:7�
1019 cm�3 corresponding to standard conditions. For
atomic argon, this perturbative approximation is expected
to hold for intensities up to 50 TW=cm2. This intensity
corresponds to a Keldysh parameter of � ¼ 1:62, where
MPI is the dominant ionization channel [16].
Kramers-Kronig theory has been successfully applied to

nonlinear refraction in solids [12,17]. Here we combine
this method with Keldysh theory to compute nonlinear
refraction in inert gases. In principle, as pointed out in
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[12], the use of the KK relation requires knowledge of
nondegenerate multiphoton absorption coefficients
��N

Kð!1; . . . ; !KÞ. These coefficients cannot easily be
provided by PPT theory. Instead, we use

��N
Kð!1; . . . ; !KÞ ¼ ��K

�

!1 þ . . .þ!K

K

�

(2)

as an estimate, generalizing the model successfully used to
compute n2 in solids [17].

Using this proven simplification, we find that the
nonlinear refraction coefficients n2k are related to (kþ 1)-
photon absorption coefficients �kþ1 via the KK relation
according to

n2kð!Þ ¼ @c�nt

�
⨏ 1

0
ð�þ k!Þ�kþ1ð�þk!

kþ1 Þ
�2 �!2

d�; (3)

where ⨏ denotes Cauchy’s principal value integral. It has

been shown in Ref. [17] that Eq. (2) is a reasonable
approximation when ac Stark terms are neglected in the
model. As a benchmark for our model, we calculate the
leading term n2ð!Þ of nonlinear refraction for helium
[Fig. 1], setting k ¼ 1.

Among the inert gases, helium is the least complex atom
and the only one for which detailed computations of n2
from atomic wave functions exist. For large wavelengths,
our analysis indicates a value n2 ¼ 4:8� 10�9 cm2=TW,
which deviates by only 26% from the value 3:8�
10�9 cm2=TW that was derived in [18] using explicitly
electron-correlated wave functions. Keeping in mind that
the absorption spectra �K have been derived from strong
field ionization rates for which often an order of magnitude
agreement with experimental data is considered reason-
able, our KK approach provides an excellent prediction of
n2. Our model also correctly reproduces the dispersive
behavior of n2 predicted in Ref. [18] and reasonably agrees
with experimental data at 1:06 �m wavelength [19]. Even
better agreement is obtained for argon [Fig. 2]. Going
beyond the tabulated values of [18] for helium, our
computations predict that n2 reaches a maximum value

n2 � 4� 10�8 cm2=TW at about 100 nm wavelength,
which corresponds to half the ionization energy. Going to
even smaller wavelengths, n2 crosses zero at 85 nm and
stays negative up to the ionization energy equivalent of
50.4 nmwavelength. This prototypical behavior with a sign
change at approximately 60% of the ionization threshold is
seen for all inert gases and duplicates the dispersion char-
acteristics of n2 in solids [17]. Compared to our previous
work [20], the possibility to extend n2 computation beyond
half the ionization energy into the negative region and the
correct prediction of its dispersion in the positive region
both arise from usage of the improved ionization cross
sections provided in Ref. [13].
Similarly good agreement of Eq. (3) with independent

experimental and theoretical data is obtained for neon,
krypton, and xenon, for which our approach reproduces
experimental and theoretical data [21,22] within 15%
precision.
Figure 2 shows an n2 computation for argon showing

similar features as the helium example. Given that the
ionization energy of argon is only 15.76 eV and that a
smaller number of photons is required to reach the contin-
uum, n2 of argon is about a factor of 20 larger in the
infrared, with a value of � 10�7 cm2=TW. This value
agrees favorably with commonly used reference data [19]
and was also reproduced by Loriot et al. in their measure-
ments. Compared to helium, the zero crossing of n2 is now
shifted to a wavelength of 140 nm.
Nonlinear refraction, in principle, holds two potential

mechanisms for saturation. First, the generation of free
electrons will replace a number of neutral atoms by ions.
In the case of Arþ, this raises the ionization threshold to
27.63 eV, which, in turn, has to reduce the resulting n2
values as illustrated by the transition from argon to helium.
A computation of the resulting values for Arþ is shown as
the dashed line in Fig. 2(b), which confirms a reduction of
n2 by a factor of� 2. Table I lists computed values of n2 of
all noble gases and their first ionic species (Z ¼ 1, 2) for
800 nm wavelength.
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FIG. 1. (a) Nonlinear refractive index n2 of He below the two-
photon absorption (TPA) resonance at 	 ¼ 85 nm. Solid lines:
n2 dispersion as extracted from Eq. (3). Dashed line: fit of
theoretical data to scaling law (dots) from [21]. (b) Same in
the vicinity of the resonance (solid line), dash-dotted line show-
ing n4ð!Þ.
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FIG. 2. (a) Nonlinear refractive index n2 of Ar below the TPA
resonance. Solid line: KK approach, Eq. (3). Dash-dotted line:
power series in !2 [21,22] fitted to theoretical data [22] (stars).
Dashed line: experimental n2 data [21]. Dotted line: Lehmeier
data extrapolated with scaling law given in [19]. (b) n2 of neutral
argon in the vicinity of the TPA resonance at 	 ¼ 85 nm [solid
line, Eq. (3)]. Dashed line: n2 of singly ionized Ar

þ. Dash-dotted
line: n4ð!Þ for Ar.
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While this first mechanism suggests a depletion of the
neutral atoms as the cause for saturation, the same effect
may also occur due to higher-order Kerr terms n2k with
k � 2. These terms can also be computed using our theo-
retical approach. As an example, we have plotted n4ð!Þ
of helium and argon as dash-dotted lines in Figs. 1(b)
and 2(b), respectively. According to our model, argon dis-
plays an infrared limit n4ð!!0Þ¼2�10�12 cm4=TW2,
reaches a 12 times higher maximum value at 240 nm, and is
negative below 210 nm. This behavior is again in agree-
ment with the prototypical dispersion of the Kerr coeffi-
cients, yet caused by three-photon rather than two-photon
absorption.

There is an apparent contradiction to the negative value
n4¼�0:36�1:03�10�9 cm4=TW2 reported in Ref. [8].
In principle, a negative n4 value at 800 nm appears to be
incompatible with the dispersion of the Kerr terms pre-
dicted by our model.

The analysis of higher-order Kerr terms can easily be
continued to arbitrary order k in our model, even beyond
the highest-order experimental n10 term in Ref. [8]. Again,
helium provides a benchmark for this extension. Using the
theoretical susceptibility data published in Ref. [23], we
find excellent (within 10%) agreement with n4 and n6
values derived from KK theory. The agreement only breaks
down in the highest-order coefficient n10 extracted from
the series expansion used in Ref. [23].

For argon at a wavelength of 800 nm, we compute
positive coefficients up to n18. Higher-order coefficients
are negative and merge into a series with constant ratio
between successive coefficients [24]. This geometric series
ensures convergence up to 70 TW=cm2. Despite the
nonalternating structure of our sequence of Kerr coeffi-
cients, we find a good agreement between the computed
nonlinearly induced index change �nKerr ¼ n2I þ n4I

2 þ
n6I

3 þ . . . and the experimental values for argon in [8], see
Fig. 3(a). Our model predicts an increase of �nKerr up to
about 42 TW=cm2 and inversion of the index change at
49 TW=cm2. This is contrasted by experimental values of
30 and 34 TW=cm2, respectively. Apart from this apparent
scaling issue, both curves agree remarkably well within the

error bounds. These bounds have been extracted from the
uncertainty of the experimental Kerr coefficients given in
Ref. [8]. In contrast, the error of our theoretical values has
been estimated from the comparison of our benchmark n2
values with independent values in the literature.
From the coefficients for He, Ne, Kr, and Xe shown in

[24], we deduce inversion intensities of 112, 89, 40, and
30 TW=cm2, respectively. Our analysis also qualitatively
agrees with solutions of the time-dependent Schrödinger
equation (TDSE) for atomic hydrogen [25]. Agreement
with corresponding calculations for argon performed in
Ref. [26] is shown by the dash-dotted curve in Fig. (3),
indicating a favorable agreement of the inversion intensity
within reasonable error margins. For the air constituentsO2

and N2, Figs. 3(b) and 3(c) show the experimentally mea-
sured �nKerrðIÞ in comparison to our theoretical deriva-
tions. In order to apply the PPT model to molecular gases,
we employ the semiempirical model of Ref. [27] with
Zeff ¼ 0:53 and 0.9 for O2 and N2, respectively.
For oxygen, our theory yields a long-wavelength limit
n2ð! ! 0Þ ¼ 0:7� 10�7 cm2=TW, which agrees excel-
lently with the electronic contribution of n2¼0:746�
10�7 cm2=TW computed in [28].
Despite delivering a higher inversion intensity than re-

ported in [8], our model nevertheless confirms plasma
clamping to occur at significantly higher intensities than
Kerr saturation. Figure 3(a) shows the refractive index
change �nðIÞ ¼ n2I � �=2�c induced by second-order
nonlinear refraction and the generation of free electrons
with density � under experimental conditions of [8]. �c ¼
me�0!

2=q2e is the critical plasma density. Clearly, plasma
clamping is expected at intensities beyond� 80 TW=cm2,
i.e., well above Kerr saturation.
In a second simulation, we model the potential effect

of depletion of neutral atoms on the index change.
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FIG. 3 (color online). Kerr saturation in (a) argon, (b) nitrogen,
and (c) oxygen at 800 nm due to higher-order Kerr terms
[Eq. (3), solid lines], classical filamentation model due to plasma
clamping (dotted line), and experimental results [8] (dashed
lines). Dash-dotted line in (a) depicts TDSE results for argon
found in [26].

TABLE I. Nonlinear refractive index n2 for neutral noble
gases in the static limit n2ð! ! 0Þ and at 800 nm (Z ¼ 1) as
well as for simply ionized atoms (Z ¼ 2). Experimental data
(rightmost column) as compiled from [18,21] and corrected for
the dispersion of the DFWM process with Eq. (13) in [20].

n2 ð10�8 cm2=TWÞ
Element Z ¼ 1 Z ¼ 2 n2ð! ! 0Þ Refs. [18,21]

He 0.52 0.03 0.48 0.38

Ne 1.31 0.27 1.18 0.96

Ar 12.68 6.14 10.84 10.40

Kr 30.69 17.28 25.63 23.17

Xe 91.58 55.17 73.87 61.39
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Given a fraction p of ionized atoms, we compute n2ðIÞ ¼
pn2;Arþ þ ð1� pÞn2;Ar where p is computed under the

assumption of 90 fs Gaussian pulses with peak intensity I
using the ionization model of [13], duplicating experimen-
tal conditions of Ref. [8]. In this case we yield a classical
saturation behavior (not shown), yet at much higher inten-
sities I > 250 TW=cm2 and without any index inversion.
Complete ionization of argon requires intensities of
�300 TW=cm2, and even then only a 50% index change
from n2 ¼ 1:3� 10�7 cm2=W at p ¼ 0 to n2 ¼
0:6� 10�7 cm2 at p ¼ 1 results. As this happens nearly
an order of magnitude beyond the inversion intensities
discussed previously, depletion effects can be clearly
ruled out.

These results shed new light on the long-disputed
mechanism behind filament formation. First and foremost,
saturation of the Kerr effect cannot be explained by in-
clusion of the next higher-order coefficient n4 alone.
Instead, similar as in the transition from third-harmonic
generation to high-harmonic generation, many coefficients
start to act simultaneously. Nevertheless, the assumptions
of perturbative nonlinear optics are expected to hold as
long as the intensity does not exceed the validity of theMPI
regime. Beyond that regime, a perturbative expansion of
the ionization rate provided by PPT ceases to exist.

While a true depletion-caused saturation n2ðIÞ ¼
n2ð0Þ=ð1þ I=IsatÞ can be developed into a Taylor series
in I resulting in a sequence of n2k with alternating signs,
our model predicts that all n2k are positive until the driving
(kþ 1)-photon process reaches about 75% of the ioniza-
tion energy. This causes a nearly unperturbed linear
increase of the index change �nKerr up to a certain thresh-
old. Above this threshold, �nKerr will rapidly decrease and
reach strong negative values. Comparing the absolute
values of n4 from our model with Ref. [8], we generally
compute smaller values than found in Taylor series ana-
lysis of experimental data. This finding corroborates that
saturation of the Kerr effect may be perfectly compatible
with experimentally observed efficiencies of fifth-order
harmonic generation processes [10].

Despite its slightly different functional shape, our results
qualitatively confirm the saturation behavior suggested by
Loriot et al. This agreement strongly suggests to include a
saturation mechanism into future models of filament for-
mation. Modeling of white-light propagation, however,
may turn out to be difficult because of the strong dispersion
of the higher-order coefficients, and methods for efficient
modeling of dispersive nonlinearities may have to be
found. We believe that this work has important consequen-
ces for nonlinear optics in a large class of materials,
including gases, solids, and metamaterials. In fact, this
may truly induce a paradigm shift in the understanding
of filamentation.
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