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Nonclassical states of a mechanical mode at nonzero temperature are achieved in a scheme that
combines radiation-pressure coupling to a light field and photon subtraction. The scheme embodies an
original and experimentally realistic way to obtain mesoscopic quantumness by putting together two
mature technologies for quantum control. The protocol is quasi-insensitive to mechanical damping.
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In the eye of the layman, quantumness is usually synony-
mous with atomic-size, well-protected, and weakly ener-
getic systems. Yet nowadays, suggestions are abundant that,
although certainly true, this picture might be too restrictive
[1]. The idea that nonclassicality might extend its domains
well beyond the boundaries of the microscopic world is, at
the same time, fascinating and challenging. Demonstrating
nonclassicality already at the mesoscopic level would be a
major achievement in this respect. Here, such ‘“mesoscopic
nonclassicality” should be intended as the enforcement of a
controllable quantum mechanical behavior in systems that,
for their dimensions or intrinsic nature, go beyond the
boundaries of the microscopic world. Among the systems
explored for such a task, those involving mechanical modes
coupled to electromagnetic fields offer unprecedented
promises [2]. The control on nano- or micromechanical
systems is such that the achievement of genuine quantum
regimes in devices fairly away from microscopic conditions
is now possible or so will be in the near future, although at
the price of dealing with very low temperatures and quite
“expensive” experimental conditions. Entanglement in-
duced by the radiation-pressure coupling between a me-
chanical mode and a light field has been predicted [3—5] and
significant steps towards its experimental demonstration
have been recently performed [6]. However, such a rudi-
mental light-matter interaction does not seem to be able to
naturally generate nonclassical states of the mechanical
mode itself [7]. In this Letter we propose an experimentally
viable protocol for quantum state engineering of a massive
mechanical mode based on the combination of radiation-
pressure coupling [2] and photon subtraction from a light
field [8,9]. We show a dynamical regime where nonclassical
states of the mechanical oscillator can be in principle
achieved under nondemanding conditions: cooling of the
oscillator down to its ground-state energy is not required as
the scheme prepares nonclassical states for operating tem-
peratures in the range of 1 K and inefficiencies at the
photon-subtraction stage do not hinder the effectiveness of
the method. Our proposal thus embodies a new way to
enforce mesoscopic nonclassicality through mature and
well-understood technological tools.
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PACS numbers: 42.50.Dv, 03.67.Bg, 42.50.Pq, 85.85.4j

We consider a prototypical optomechanical setting con-
sisting of a cavity driven by an intense light field of
frequency w; and endowed with a highly reflecting
end mirror that can oscillate around an equilibrium posi-
tion. The vibrating mirror is modeled as a mechanical
harmonic oscillator (frequency w,,). It experiences dis-
placements in phase space dependent on the intensity of
the cavity field (which has frequency w,) and due to the
radiation-pressure coupling [10]. We use m to label the
mechanical oscillator, while f indicates the field mode. For
a cavity having a large enough free spectral range, such

interaction is modeled by the Hamiltonian [11] H mf =
—h /\/ﬁme with y = w,.L ™' the optomechanical coupling
rate (L is the length of the cavity), A, = f t f the photon-
number operator of the cavity field [/ (fT) is the corre-
sponding annihilation (creation) operator], and Qn1 =
JVi/Quw,,)q§,, the position operator of the mechanical
oscillator, whose associated dimensionless quadrature is
G, = (i + m1)/\/2 [ is the mass of the oscillator, while
7 and /it are its bosonic operators]. An important parame-
ter is the detuning A between the pumping field and the

cavity mode. Solving the dynamics induced by F{ ,, + when
photon leakage from the cavity, mechanical damping, and
chaotic thermal motion of the mechanical oscillator at
nonzero temperature are considered is conveniently done
by linearizing the dynamics around steady-state values of
field intensity and position of the mirror [3]. The resulting
model is quadratic in the system’s bosonic operators and is
solved for the statistical properties of its parties. Starting
with a coherent state of the pumping field and a thermal
state of the mechanical mode, the linearized coupling
maintains the Gaussian nature of the initial optomechan-
ical state. The resulting dynamics is such that entangle-
ment at nonzero temperature is possible [3,4].

The initial point of our analysis is such a correlated
field-oscillator state, whose properties are convenie-
ntly characterized by its covariance matrix o having
elements o;; = (§;4; + 4;4,)/2 (i, j = 1,...,4) with q =
(Gm» P> X4, 9¢). In this expression we have introduced the
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field quadratures &, = 7+ fH/ 2, Vr= —i(f = fH/\2
and the mechanical out-of-phase quadrature p,, such that
[4m> Pm] = i. The covariance matrix of the system can in
general be written as

I

with m = Diag[m,,, my,] a diagonal matrix encompass-
ing the local properties of the mechanical mode and
ji= (j; ﬁi) embodying either the field’s properties (for
j = f) or the correlations between the two subsystems
(when j = ¢). The analytical expressions for the entries
of o are given in Ref. [12].

We now pass to the description of the scheme proposed
in this Letter. The field reflected by the mechanical mirror
undergoes a single photon-subtraction process (that corre-
spondingly stops the cavity-pumping process). A sketch of
the proposed system is given in Fig. 1. The idea behind our
proposal is that the correlations (not necessarily quantum
[12]) set between the mechanical oscillator and the field
are enough to “transfer” the nonclassicality induced in the
conditional state of the field by the photon-subtraction
process to the state of the mechanical mode. In this respect,
our proposal is along the lines of the scheme by Dakna
et al. [13], where a photon-number measurement on one
arm of an entangled two-mode state projects the other one
into a highly nonclassical state. However, we should re-
mark again that no assumption on an initially entangled
optomechanical state will be necessary [12]. While here we
are interested in the formal aspects of the mechanism
behind our proposal, a physical protocol will be addressed
later on. Given the covariance matrix of the bipartite state
of the system, we calculate the Weyl characteristic function
as x(n, A) = e~ (/2800 with g = 5, + in, A = A, + i),
and q = (9,, 75, A,, A;) the vector of complex phase-
space variables. With this, the density matrix of the
joint file-oscillator system can be written as Qp, =

72 [ x(n, )D} () ® DE(A)dPnd> X [14]. Here, Dj(a) =
exp[ozd;-r — a*a;] is the displacement operator of mode
j = m, f of amplitude « € C. The mechanical state re-
sulting from the subtraction of a single quantum from the
field is then described by [15]

Geiger-like
detector,

shutter PBS QWP mechanical

mode

FIG. 1 (color online). Sketch of the thought experiment. A
laser field (with a set polarization) enters a cavity and drives the
oscillations of an end mirror embodying a mechanical mode. The
field is then photon subtracted by a high-transmittivity beam
splitter (BS) and a Geiger-like photodetector. A click at the latter
triggers a shutter (such as an electrically driven half-wave-plate)
that blocks the pumping process. We show the symbols for a
polarizing beam splitter (PBS) and a quarter-wave-plate (QWP)
used to direct the field to the cavity or the photosubtraction unit.

on = N7 [ xn VDLW I nd A @)

with /N° a normalization constant. Equation (2) can
be manipulated so as to get rid of the degrees of freedom
of the cavity field by using the transformation rule
of f induced by DA;r-()t) and the closure relation

7! [dala)(al = ]Alf, where |a) is a coherent state
[14]. After some algebraic manipulations, one gets

WlfDj W= 7! [(al — P + x'a
— Ao + 1) WPV a2 2 (3)

We now first perform the integration over A, introduce
the function C(a, 1, A) = x(n, M(la|> — [A]> + Ma—
Ao+ 1)e /DI and cast the state of the mechanical
mode as @,, = N a3 [ D} (n)F[C(n, V)d*nd*a with
FIC(n, A)] the Fourier transform of C(a, 1, A). Such a
function encompasses any effects that the photon subtrac-
tion might have on the state of the mechanical system. As
discussed before, the idea behind our proposal is that the
correlations shared by the field and the mechanical mode
are sufficient for the latter to experience the effects of the
de-Gaussification induced by the photon subtraction.
In what follows, we show that this is indeed the case.

In order to determine the features of @,,, we address its
Wigner function (WF) W(§,,8,)=m"2 [E(y)e?” o7
d’>y (with 8§ = 8, + i8;), which is calculated using the
characteristic function Z(y) = tr[D,,(y)e,,] evaluated at
the phase-space point y € C. A lengthy calculation
leads to

W(s,, 8) = mN A(o) exp[=2(87/myy = 87/mn)]
4)
with N = 2/[(detm)*/*(f,, + f1; — 2)] and
Alo) = my,[(f11 + foo — 2)m7,
+ (487 — my)(cfy + ch)] + mi (467 — my,)
X (¢35 + ¢3)) = 8myymy(cyyca + €12¢2)8,8,.
(5)

The polynomial dependence of A (o) on & entails the
non-Gaussian nature of the reduced mechanical state. We
now seek evidences of nonclassicality. A rather stringent
criterion for deviations from classicality is the negativity of
the WF associated with a given state. This embodies the
failure to interpret it as a classical probability distribution,
which is instead possible whenever the WF is positive.
Building on the so-called Hudson theorem [16], which
proves that only multimode coherent and squeezed-vacuum
states have non-negative Wigner functions, measures of
nonclassicality based on the negativity of the WF have
been formulated. More recently, operational criteria for
inferring quantumness through the negative regions in the
WF have been proposed [17]. By inspection, we find that
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Eq. (4) can indeed be nonpositive and achieves its most
negative value for 6,; = 0. Assuming k;; = 1 (withi=1,2
and k= m, f), we have W(0,0) <0 for m;/mypn>
[(f11 + f22 = 2myy — (cf) + 1))/ (3, + ¢3,), which s
quite an interesting finding. First it shows that the non-
classicality of the mechanical mode depends on its initial
degree of squeezing given by the ratio my;/m,, [18].
Second, we expect a o-based criterion for nonclassicality
to be less prone to artifacts (such as large error bars) that
would mask negativity and thus erroneously make the WF
consistent with a classical probability distribution (the re-
construction of the matrix o can be performed as described
in [3,4,17] via high-precision all-optical procedures [19]).
Finally, the condition above is handy to gauge the quality of
the parameters of a given experiment with respect to the
achievement of a nonclassical mechanical state. Figure 2
shows that W(35,, ;) becomes negative for proper choices
of the parameters and quite a large temperature.
Depending on the parameters being used, optomechan-
ical entanglement can persist up to temperatures of about
20 K [3,4]. We now wonder whether the conditional state-
engineering scheme proposed here enjoys this very same
feature. First, we notice that by subtracting a single photon
from mode 2 of a two-mode squeezed vacuum |{) =
(coshl)~' ¥ [ A"|n, n), with squeezing factor ¢ <1
and A = tanh/, the Wigner function of the unmeasured
mode 1 is basically identical to W(§,, §;) in the limit
of small temperature (7 ~ 1 mK). This is quantitatively
illustrated in Figs. 3(a) and 3(b), where the WF of mode 1
for £ = 0.4 is shown to be indistinguishable from the
analogous function of mode m after the application of
our scheme. Such a similarity is understood as follows:
the high-quality mechanical mode, large-finesse cavity,
and low-temperature limit used here make a unitary ap-
proach to the time evolution of the optomechanical system
quite appropriate. The dynamics, in such case, involve two-
mode squeezing of modes m and f [20], which explains the
similarity seen in Fig. 3 and discussed here. Such an
analogy is illuminating as it is straightforward to see that
the effects experienced by mode 1 in the (unnormalized)
unilaterally photon-subtracted state d,|{) (¢ I&;L can be
interpreted as the addition of a photon, which is the origin
for nonclassicality of the resulting state (as signaled by
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FIG. 3 (color online).

FIG. 2 (color online). WF of m for A/w,, = 0.05, T = 0.4 K,
and u =5 X 10~ 2 kg. We have taken a cavity of length L = 1 mm,
frequency /27 = 4 X 10'* Hz, and finesse 10*, pumped with
20 mW. The mechanical damping rate is as small as ~10 Hz [2].

the negativity of its WF). When T is increased, however,
the rotational invariance of W(§,, §;) is progressively lost.
As a result of the loss of coherence, W(§,, 8;) splits
into two localized peaks, which become progressively
Gaussian shaped as the temperature grows and represent
the thermal average of displaced states in the phase space.
This effect is clearly illustrated in Figs. 3(c)-3(f), where a
snapshot of the phase-space dynamics against 7" is shown.
As anticipated above, for the parameters chosen in our
analysis, quite large negative values are observed in
W(5,, 8;) for T < 1 K and the WF remains negative up
to 1 K [see Fig. 3(g)]. In Ref. [12] we estimate the lifetime
of the enforced nonclassicality.

Our approach so far was to consider photon subtraction at
aformal level. Although, as we will demonstrate shortly, the
accuracy of the quantitative results achieved in this way is
excellent we now go beyond such an abstract description
and assess a close-to-reality version of our proposal. In a
real experiment, the non-Hermitian operation of subtract-
ing a photon is realized by superimposing, at a high-
transmittivity beam splitter (BS), mode f to an ancilla A
prepared in the vacuum state [8,21]. This makes ours a
three-body system characterized by the variance matrix
o' =(,eB})(0ce 1,)(1 ® B;4), where we have intro-
duced the symplectic BS transformation By = 0(®
(714) —io, ® (r1). Here 7 1is the transmittance of
the BS (2 + 7> = 1), 0y = 1 and o, is the y Pauli matrix.
The characteristic function of such correlated three-
mode state is ¥(7, A, &) = exp[—qo'q’/2], where q=
M A A, €, &) is the vector of phase-space
variables of the three modes and & = &, + i&;. The

®
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(a) Conditional Wigner function of mode m after photon subtraction for T =4 X 107> K and u =

5 X 1072 kg. (b) Same as panel (a) but assuming that modes m and f are initially in a pure two-mode squeezed-vacuum state of
squeezing factor { = 0.4. (¢)—(f) Snapshot of the Wigner function of the mechanical mode for 7 = 0.1, 0.2, 0.3, 0.4 K [in going from
panel (¢) to (f)]. (2) Negativity of W(0, 0) against temperature T for A/w,, = 0.05. Other parameters as in Fig. 2.
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corresponding density matrix is thus given by
0= [x(n A ODL(mDI WD (&)d* nd>éd®A. We
postselect the event where a single click is obtained at a
photo-resolving detector measuring the state of mode A,
thus projecting its state onto |1),. This gives the condi-
tional state @, = N7 2 [x(n,0,6D(n1—&)x
e WP R2pa2é with N the normalization factor and
where the formula ,(1|DT(&)[1), = e~ 1€"/2(1 — |£])
has been used [14]. The calculation of the WF W(§,, §,)
of the mechanical mode then proceeds along the lines
sketched above. The resulting analytic expression is, how-
ever, very involved and can only be managed numerically. A
thorough analysis shows that already at 72 = 0.8, W(§,, §,)
reproduces very accurately the behavior of W(§,, §;). For
instance, at the value of A used to produce the figures in this
Letter, we get |W(0,0) — W(0,0)| = 1078, Clearly, the
quality of the agreement depends crucially on the BS trans-
mittivity. It is enough to take 7 ~ 0.9 to get full agreement
between W(§,, 8,) and its formal counterpart over the range
A €10, 0.1]w,,, where nonclassicality is observed.

For the sake of a practical implementation, it is important
to assess the role that imperfections play in the performance
of our scheme. The most relevant one for our tasks is the
inability of discriminating the number of photons imping-
ing on the detector used to subtract a single photon from f.
We thus consider a finite-efficiency Geiger-like detector
modeled by the positive operator valued measure-
ment {I1}, 1, — [1}} with I1} = F2(1 — e)/]j),{l
the projection operator accounting for ‘‘no-click” at
the detector. Because of the finite efficiency € € [0, 1],
a photonic state with j photons has a probability (1 — €)/
to be missed. It is straightforward to see that the WF
corresponding to the state of mode m is then
given by W(5,, 8) = 72 F[E(y, €] with E(y,e)=

¥(7.0,00 =13 (1= €V [ 7(y.0,€)e 17D £ (1€P)d>¢
and L (|£|?) the Laguerre polynomial of order j. By means
of straightforward algebra we have 3% (1 — eV Li(|1£17) =
e =el20lE Je 5o that E(y, €) « 7(v,0,0) — D(y, €)
with ®(y, €)= —(me)~" [ j(y,0, £)e @~ /291EP g2 ¢ The
effects of detection inefficiency are thus quantified by con-
sidering that ®(y, €) is the only term that depends on € in
E (v, €). Therefore, |®(y, 1) — O(y, €)| provides a quanti-
tative estimate of the differences due to a nonideal detector.
Numerically, for € = 0.7 we have found negligible values
of this quantity (~ 1072), almost uniformly with respect
to 7: Fig. 3(g) is reproduced without noticeable differences.
Moreover, the performance of our scheme is not affected by
even smaller detection efficiency. In line with what holds for
photon-subtraction processes, detection inefficiencies only
lower the success probability of the scheme without affect-
ing the fidelity of the process itself [8,21]. The dark count
rate of photodetectors can generally be neglected in photon-
subtraction experiments [8,9].

We have put forward a scheme for the preparation of
nonclassical states of a mechanical mode achieved by

combining the paradigm for photon subtraction and a
cavity-optomechanical setup. By using parameters cur-
rently achievable in the lab, we have demonstrated non-
classicality (as given by negativity of the WF) robust to
both the effects of a nonzero operating temperature and
imperfections at the photon-subtraction stage. The latter
could be performed either intracavity, exploiting the inter-
action between the cavity field and a two-level system [9]
(such as an atom trapped within the cavity volume, as in
some proposals put forward recently [22]), or extracavity
(using the proposals in [2—4,17]). It will also be interesting
to quantitatively study the regime suggested in [4] for
effective bilateral subtraction of excitations from both f
and, indirectly, the mechanical mode. The realistic nature
of our proposal and the fundamental character of the
problem addressed here adhere very well with the current
quest for quantumness at the mesoscopic level and could
represent a useful strategy for its achievement.
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