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We study four-dimensional gravity theories that are rendered renormalizable by the inclusion of

curvature-squared terms to the usual Einstein action with a cosmological constant. By choosing the

parameters appropriately, the massive scalar mode can be eliminated and the massive spin-2 mode can

become massless. This ‘‘critical’’ theory may be viewed as a four-dimensional analogue of chiral

topologically massive gravity, or of critical ‘‘new massive gravity’’ with a cosmological constant, in

three dimensions. We find that the on-shell energy for the remaining massless gravitons vanishes. There

are also logarithmic spin-2 modes, which have positive energy. The mass and entropy of standard

Schwarzschild-type black holes vanish. The critical theory might provide a consistent toy model for

quantum gravity in four dimensions.
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Three-dimensional topologically massive gravity [1] has
been studied extensively in recent times as a toy model for
a quantum theory of gravity. In addition to the usual
massless graviton (which carries no local degrees of free-
dom), there is in general a massive propagating spin-2
field. For generic values of the coupling constant ��1 for
the topological Chern-Simons term, the energy of massive
spin-2 excitations is negative if one takes the Einstein-
Hilbert term to have the conventional (positive) sign. On
the other hand, the Banados-Teitelboim-Zanelli (BTZ)
black hole has positive mass if the Einstein-Hilbert term
has the conventional sign. Thus there is no choice of sign
for the Einstein-Hilbert term which gives positivity for
both the massive spin-2 excitations and the mass of the
BTZ black-hole solution. It was, however, noted in Ref. [2]
that if the Chern-Simons coupling is chosen so that�‘¼1,
where ‘ is the ‘‘radius’’ of the AdS3 solution, then the
massive spin-2 field becomes massless, and both the field
excitations and the BTZ black-hole mass will be positive
for the conventional choice of sign for the Einstein-Hilbert
term. It was, furthermore, conjectured that the excitations
in this ‘‘critical’’ theory are described by a consistent chiral
two-dimensional boundary theory.

In this Letter, we address the question of whether any
kind of analogous critical limit might arise in four-
dimensional gravity. Even though such a limit would pre-
sumably not be expected to describe a realistic theory of
four-dimensional gravity, it might nevertheless be of inter-
est as another simplified ‘‘toy model,’’ with the advantage
in this case of being in four, rather than three, dimensions.
Since one would hope that such a toy model would be
renormalizable, the natural place to look is in the class of
four-dimensional gravity theories with curvature-squared

modifications, which were first studied in detail in
Refs. [3,4]. Since the Gauss-Bonnet invariant does not
contribute to the equations of motion in four dimensions,
we just need to consider the action

I ¼ 1

2�2

Z ffiffiffiffiffiffiffi�g
p

d4xðR� 2�þ �R��R�� þ �R2Þ: (1)

As was discussed in [3,4] (for � ¼ 0), this theory is
renormalizable, and it describes in general a massless spin-
2 graviton, a massive spin-2 field, and a massive scalar. The
energies of excitations of the massive spin-2 field are
negative, while those of the massless graviton are, as usual,
positive. Thus although the theory is renormalizable, it
suffers from having ghosts. The massive spin-0 is absent
in the special case � ¼ �3�, while the massive spin-2 is
absent if instead � ¼ 0.
Following the general strategy of Ref. [2], we shall seek

a limit in which the massive spin-2 field becomes massless.
The presence of the cosmological constant in the action (1)
is essential for this step. We shall also choose the parame-
ters so that the massive scalar is absent. The energies of
excitations of the remaining massless graviton then vanish.
The fourth-order graviton operator also admits logarithmic
modes, and we find that these have positive energy. We
then investigate the mass of black holes in the critical
theory. We find that the effect of the curvature-squared
terms is to modify the mass formula such that
Schwarzschild-anti–de Sitter (AdS) black holes are mass-
less. (It is possible that there may exist more general black-
hole solutions of the fourth-order equations, even static
ones, which might have positive mass.) In fact, three-
dimensional ‘‘new massive gravity’’ [5] with a cosmologi-
cal constant exhibits similar features at its critical point, of
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having zero-energy excitations for the massless gravitons
[6] and zero mass for the BTZ black hole [7].

It is, of course, rather unusual to have a theory of gravity
in which black holes are massless. One may have to accept
this as the price to be paid for having a four-dimensional
theory of gravity, without ghosts, that has the possibility of
being renormalizable. Thus, although the theory cannot
claim to be in any way phenomenologically realistic, it
may provide a useful simplified arena for studying some
aspects of a potentially renormalizable theory of massless
spin-2 fields in four dimensions.

The equations of motion that follow from the action (1)
are G�� þ E�� ¼ 0, where

G �� ¼ R�� � 1
2Rg�� þ�g��; (2)

E�� ¼ 2�ðR��R
�
� � 1

4R
��R��g��Þ þ 2�RðR�� � 1

4Rg��Þ
þ �ðhR�� þ 1

2hRg�� � 2r�rð�R�Þ
�Þ

þ 2�ðg��hR�r�r�RÞ: (3)

In what follows, we shall need to consider the linearization
of these equations around a background solution of the
equations of motion. We shall take the background to be
four-dimensional anti–de Sitter spacetime, for which,
following from the equations of motion,

R�� ¼ �g��; R���� ¼ �

3
ðg��g�� � g��g��Þ: (4)

Note that in four dimensions, unlike in higher dimensions,
the inclusion of the explicit cosmological constant in (1) is
essential in order to have an AdS solution. This is because
E�� vanishes in any Einstein space background in four

dimensions.
Writing the varied metric as g�� ! g�� þ h��, and so

�g�� ¼ h��, we find to first order in variations that

�ðG��þE��Þ¼ ½1þ2�ð�þ4�Þ�GL
��

þ�

��
h�2�

3

�
GL

���2�

3
RLg��

�

þð�þ2�Þ½�r�r�þg��hþ�g���RL;

(5)

where GL
�� and RL are the linearized variations of G��

and R:

G L
�� ¼ RL

�� � 1
2R

Lg�� ��h��; (6)

RL
�� ¼ r	rð�h�Þ	 � 1

2hh�� � 1
2r�r�h; (7)

RL ¼ r�r�h�� �hh��h: (8)

(We have also defined RL
��, the linearization of R��, and

introduced h ¼ g��h��.)

For our purposes, it will be convenient to use general
coordinate invariance to impose the gauge condition

r�h�� ¼ r�h: (9)

Substituting this into (6)–(8), we find

G L
�� ¼ � 1

2
hh�� þ 1

2
r�r�hþ�

3
h�� þ�

6
h;

RL ¼ ��h:

(10)

We can substitute these expressions into Eq. (5). Taking the
trace, we find

0 ¼ g���ðG�� þ E��Þ ¼ �½h� 2ð�þ 3�Þhh�: (11)

We see that h describes a propagating massive scalar mode,
except in the special case that

� ¼ �3�; (12)

in which case the equations of motion imply that h ¼ 0. It
is this case, where (12) holds, that we shall focus on in our
subsequent discussion [8]. Note that modulo the Gauss-
Bonnet combination, which does not contribute to the
equations of motion in four dimensions, the curvature-
squared terms with � ¼ �3� can be written as
1
2�C

����C����, where C���� is the Weyl tensor.

Having imposed (12), implying that h ¼ 0, the variation
of the field equations gives

0 ¼ 3�

2

�
h� 2�

3

��
h� 4�

3
� 1

3�

�
h��; (13)

where h�� is in the transverse traceless gauge

r�h�� ¼ 0; g��h�� ¼ 0: (14)

The fourth-order Eq. (13) describes a massless graviton,
satisfying �

h� 2�

3

�
hðmÞ
�� ¼ 0; (15)

and a massive spin-2 field, satisfying�
h� 4�

3
� 1

3�

�
hðMÞ
�� ¼ 0: (16)

The criterion of stability for spin-2 modes satisfying
ðh� 2�=3�M2Þh�� ¼ 0 in the AdS4 background re-

quires that M2 � 0 (see, for example, [9]), and so, since
� is negative, we must have

0<� �
�
� 1

2�

�
: (17)

(In particular, � must be positive.) We shall choose the
critical value

� ¼ � 1

2�
: (18)

By imposing (12) in order to eliminate the massive
scalar mode, and additionally (18) in order to make the
massive spin-2 mode become massless, we have arrived
at a four-dimensional theory describing only massless
gravitons. We may now examine the energy of the excita-
tions of the graviton modes in the AdS4 background,
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ds24 ¼
3

ð��Þ ½�cosh2�dt2 þ d�2 þ sinh2�d�2
2�: (19)

A procedure for doing this has been described in Ref. [2],
based upon the construction of the Hamiltonian for the
graviton field. Leaving � as yet unrestricted, we may write
down the quadratic action whose variation yields the equa-
tions of motion (13):

I2 ¼ � 1

2�2

Z ffiffiffiffiffiffiffi�g
p

d4xh��ð�G�� þ �E��Þ

¼ � 1

2�2

Z ffiffiffiffiffiffiffi�g
p

d4x

�
1

2
ð1þ 6��Þðr	h��Þðr	h��Þ

þ 3

2
�ðhh��Þðhh��Þ þ�

3
ð1þ 4��Þh��h��

�
: (20)

Using the method of Ostrogradsky for Lagrangians written
in terms of second, as well as first, time derivatives, we
define the conjugate ‘‘momenta’’


ð1Þ�� ¼ �L2

� _h��

�r0

�
�L2

�ðdðr0h��Þ=dtÞ
�

¼ � 1

2�2

ffiffiffiffiffiffiffi�g
p r0ðð1þ 6��Þh�� � 3�hh��Þ;


ð2Þ�� ¼ �L2

�ðdðr0h��Þ=dtÞ ¼ � 3�

2�2

ffiffiffiffiffiffiffi�g
p

g00hh��: (21)

Since the Lagrangian is time-independent, the Hamiltonian
is equal to its time average, and writing it in this way is
advantageous because we can then integrate time deriva-
tives by parts. Thus we obtain the Hamiltonian

H ¼ T�1

�Z
d4x

�

ð1Þ�� _h�� þ 
ð2Þ��

@ðr0h��Þ
@t

�
� I2

�

¼ 1

2�2T

Z ffiffiffiffiffiffiffi�g
p

d4x

�
�ð1þ 6��Þr0h�� _h��

þ 6�

�
@

@t
ðhh��Þ

�
ðr0h��Þ

�
� 1

T
I2; (22)

where all time integrations are taken over the interval T.
Evaluating this for the massless mode [satisfying (15)]

and for the massive mode [satisfying (16)], we therefore
obtain the on-shell energies

Emassless ¼ � 1

2�2T
ð1þ 2��Þ

Z ffiffiffiffiffiffiffi�g
p

d4xr0h
��
ðmÞ _h

ðmÞ
�� ;

(23)

Emassive ¼ 1

2�2T
ð1þ 2��Þ

Z ffiffiffiffiffiffiffi�g
p

d4xr0h��
ðMÞ _h

ðMÞ
�� : (24)

Evidently, since the graviton modes in pure Einstein grav-
ity with � ¼ 0 are known to have positive energy, the
integral itself in (23) must be negative. The integral in
(24) is therefore also expected to be negative (at least
when � is chosen so that the mass of the mode is small,
and probably in all cases), and so we see that the massive
excitations in AdS, with positive �, will have negative

energy. Imposing now our criticality condition (18), we
see that the energies (23) and (24) become equal and
vanish. This is analogous to the critical situation [6] of
new massive gravity [5] with a cosmological constant.
There are also logarithmic modes at the critical point,

which are annihilated by the full fourth-order operator
ðhþ 2

3 �Þ2 but not by (hþ 2
3�) alone. (Analogous modes

in three-dimensional chiral gravity were obtained in
Ref. [10].) Such logarithmic modes have been constructed

recently in Ref. [11]; they can be written in the form h
log
�� ¼

fðt; �Þh��, where h�� are standard spin-2 massless modes

and fðt; �Þ ¼ 2itþ logsinh2�� logtanh�. (See also
[12].) We have explicitly evaluated the expression (22) at
the critical point for these modes and found, by numerical
integration, that they have a finite and strictly positive
energy [13].
We now investigate the mass of black-hole solutions.

(All solutions of the � ¼ � ¼ 0 theory are also solutions
of the full theory.) This can be done by using the procedure
of Abbott and Deser [14], by writing the black-hole metric
in the form g�� ¼ �g�� þ h��, where �g�� is the metric on

AdS, and interpreting the linearized variation of the field
equation, given in our case by (5), as an effective gravita-
tional energy-momentum tensor T�� for the black-hole

field. One then writes the conserved current J� ¼
T����, where �� is a Killing vector that is timelike at

infinity, as the divergence of a 2-form F ��, i.e., J
� ¼

r�F��. From this, one obtains the Abbott-Deser mass

E ¼ 1

2�2

Z
S1

dSiF 0i; (25)

as an integral over the sphere at infinity. The relevant
contributions to F �� associated with the various terms in
(5) have been calculated in Ref. [15]. By defining

F ��
ð0Þ ¼ ��r½�h��� þ �½�r��hþ h�½�r����

� �½�r�h
��� þ 1

2hr���;

F ��
ð1Þ ¼ 2�½�r��RL þ RLr���;

F ��
ð2Þ ¼ �2��r½�G���

L � 2G�½�
L r����;

(26)

it follows that

r�F
��
ð0Þ ¼ G��

L ��;

r�F
��
ð1Þ ¼ ½ð�r�r� þ g��hþ�g��ÞRL���;

r�F
��
ð2Þ ¼

��
h� 2�

3

�
G��

L � 2�

3
RLg��

�
��:

(27)

These are precisely the three structures in (5), after con-
tracting �ðG�� þ E��Þ with ��, so F �� ¼ P

iF
��
ðiÞ .

Carrying out this procedure for the Schwarzschild-AdS
black hole, one finds that only the term in (25) coming
fromF ��

ð0Þ gives a nonvanishing contribution, and therefore
the Abbott-Deser mass is [16]
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M ¼ m½1þ 2�ð�þ 4�Þ� ¼ mð1þ 2��Þ; (28)

where m is the usual mass parameter of the solution. Thus
the black-hole mass is non-negative for� in the range (17).
For our critical condition (18) that makes the massive spin-
2 mode become massless, we see that (28) becomesM¼0,
and so the Schwarzschild-AdS black hole has zero mass.
(We expect the same to be true of Kerr-AdS black holes.)
Similar zero-energy results have previously been obtained
in the context of a scale-invariant gravity theory with a
pure Weyl-squared action [17] and in three-dimensional
critical new massive gravity [7]. (See also [18].)

Wald’s formula S¼�2

R ffiffiffi

h
p

d2x�����ð@L=@R���Þ
[19] for the entropy gives S ¼ 
r2þ½1þ 2�ð�þ 4�Þ� for
the Schwarzschild-AdS black hole, which is consistent
with the first law of thermodynamics dM ¼ TdS for all
� and �, including the critical case � ¼ �3� ¼ 3=ð2�Þ
where both M and S vanish.

It was shown in Ref. [3] that four-dimensional Einstein
gravity with curvature-squared terms added is in general
renormalizable. The case � ¼ �3� was, however, ex-
cluded, on the grounds that the scalar mode would then
have a propagator with only 1=k2 falloff rather than 1=k4.
A key new feature in our discussion is the inclusion of a
cosmological constant in the theory, leading, as we saw
from Eq. (11), to the entire elimination of the scalar mode
when � ¼ �3�. Whether the critical theory we have con-
structed might in fact be renormalizable now depends on
whether � ¼ �3� and � ¼ �1=ð2�Þ are stable under the
renormalization group flow. A renormalization group
analysis of the stability of the chiral point in three-
dimensional topologically massive gravity suggests
that, in that model, the chiral point is not stable [20].
However, differences between that theory and our critical
gravity, together with possible subtleties of scheme depen-
dence, leave this as an open question at this point.

In this Letter, we have studied a four-dimensional theory
of gravity with a cosmological constant, possibly rendered
renormalizable by including curvature-squared terms in
the action. By choosing parameters appropriately, we elim-
inated the massive scalar mode that is generically present,
and we also arranged for the massive spin-2 mode to
become massless. The resulting critical theory could be
viewed as a four-dimensional analogue of the chiral three-
dimensional topologically massive gravity theory studied
in Ref. [2]. Although the massless spin-2 modes have zero
energy, the fact that logarithmic modes of the fourth-order
graviton operator have positive energy shows that the
critical theory is not entirely trivial. The standard
Schwarzschild-AdS black hole has zero mass and (consis-
tently) zero entropy; there could in principle exist more
general black-hole solutions that are not also solutions of
pure Einstein gravity. It would be of interest to construct
these and to see if they have nonzero mass.
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Note added in proof.—Recent results in Refs. [21,22]

have shown that a general linear combination of the regular
and logarithmic spin-2 modes has an indefinite norm. Thus,
imposing unitarity would require suppressing the logarith-
mic modes.
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