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The inflationary paradigm has enjoyed phenomenological success; however, a compelling particle

physics realization is still lacking. Axions are among the best-motivated inflaton candidates, since the

flatness of their potential is naturally protected by a shift symmetry. We reconsider the cosmological

perturbations in axion inflation, consistently accounting for the coupling to gauge fields c�F ~F, which is

generically present in these models. This coupling leads to production of gauge quanta, which provide a

new source of inflaton fluctuations, ��. For c * 102M�1
p , these dominate over the vacuum fluctuations,

and non-Gaussianity exceeds the current observational bound. This regime is typical for concrete

realizations that admit a UV completion; hence, large non-Gaussianity is easily obtained in minimal

and natural realizations of inflation.
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Introduction.—Primordial inflation is the dominant
paradigm in current cosmology since (i) it resolves the
conceptual difficulties of the standard big bang model,
and (ii) it predicts primordial perturbations with properties
in excellent agreement with those that characterize the
cosmic microwave background (CMB) anisotropies.
Despite these successes, there is still no compelling parti-
cle physics model of inflation, the key obstacle being the
requirement of a sufficiently flat scalar potential Vð�Þ.
Even generic Planck-suppressed corrections may yield
unacceptably large contributions to the slow-roll parame-

ters � � M2
p

2 ðV0
V Þ2 and � � M2

p
V00
V , thus spoiling inflation (a

prime denotes the derivativewith respect to�, whileMp ffi
2:4� 1018 GeV is the reduced Planck mass). One of the
simplest solutions to this problem is to assume that the
inflaton � is a pseudo Nambu-Goldstone boson (PNGB)
[1–8]. In this case, the inflaton enjoys a shift symmetry
� ! �þ const, which is broken either explicitly or by
quantum effects. In the limit of exact symmetry, the �
direction is flat, and thus dangerous corrections to � and �
are controlled by the smallness of the symmetry breaking.
Moreover, PNGBs like the axion are ubiquitous in particle
physics: They arise whenever an approximate global sym-
metry is spontaneously broken and are plentiful in string
compactifications. Axion inflation is also phenomenologi-
cally desirable since the tensor-to-scalar ratio is typically
large in such models.

The first explicit example of axion inflation was the
natural inflation model [1] in which the shift symmetry is
broken down to a discrete subgroup � ! �þ ð2�Þf,
resulting in a periodic potential

Vnpð�Þ ffi �4½1� cosð�=fÞ� (1)

with f the axion decay constant. For such a potential,
agreement with observations requires f >Mp, which

may be problematic since it suggests a global symmetry

broken above the quantum gravity scale, where effective
field theory is presumably not valid. Moreover, f >Mp

does not seem possible in string theory [9]. More recently,
several controlled realizations of axion inflation have been
studied—including double-axion inflation [2], N-flation
[3,4], axion monodromy [5], and axion–4-form mixing
[8]—which have f <Mp but nevertheless behave effec-

tively as large-field inflation models (� * Mp).

In axion inflation models, the inflaton couples to some
gauge field as �

f �F�� ~F��, where F�� ¼ @�A� � @�A�

and ~F�� ¼ ����	F�	=2. The scale of this coupling is set

by the axion decay constant f; the dimensionless parame-
ter � is typically of the order of unity but can be � 1 in
multifield [2] or extra-dimensional models [7]. It is natural
to explore the implications of this generic interaction for
observables. In Ref. [7] it was shown that energy dissipa-
tion into gauge fields can slow the motion of�, providing a
novel new inflationary mechanism that operates at very
strong coupling. Here, we point out that even in the con-
ventional slow-roll regime, the coupling �F ~F can have
significant impact. The motion of the inflaton amplifies the
fluctuations of the gauge field, which in turn produce in-
flaton fluctuations via inverse decay [10]: �Aþ �A ! ��.
When f & 10�2Mp, which is natural for realizations that

admit an UV completion, we show that the inverse decay
typically dominates over the usual vacuum fluctuations
from inflation, and this has dramatic phenomenological
consequences. Our results are quite general: In the spirit
of effective field theory, a coupling �F ~F should be in-
cluded whenever � is pseudoscalar [11].
Recently, there has been considerable interest in non-

Gaussian effects in the CMB (see the reviews [12] for
references). Non-Gaussianity will be probed to unprece-
dented accuracy with the forthcoming Planck data and may
provide a valuable tool to discriminate between models.
Several constructions are known which can predict an
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observable signature; however, in the minimal cases
(decoupled single field models of slow-roll inflation)
non-Gaussianity is small [13], and obtaining an observable
level usually requires either fine-tuning or unconventional
field theories. Here we point out that the inverse decay
contribution to �� is highly non-Gaussian in axion mod-
els; observational bounds are easily saturated for modest
values of f. Thus, the simplest and, perhaps, most natural
models of inflation can lead to observable non-Gaussianity.

Cosmological perturbations.—We consider the theory

S¼�1

2
ð@�Þ2 �Vð�Þ � 1

4
F��F�� � �

4f
�F�� ~F��; (2)

where� is the PNGB inflaton, F�� the field strength of the

gauge field [for simplicity, a Uð1Þ gauge field is consid-
ered; the extension to non-Abelian groups is straightfor-
ward], and ~F�� its dual. The potential Vð�Þ may contain a

periodic contribution of the form (1) due to nonperturba-
tive effects and, perhaps, nonperiodic contributions from
other effects (such as wrapped branes). In this section, we
leave Vð�Þ arbitrary, except to suppose that it is suffi-
ciently flat to support Ne * 60 e-foldings of inflation.
We assume a Friedmann-Robertson-Walker geometry
ds2 ¼ �dt2 þ aðtÞ2dx2 ¼ að
Þ2½�d
2 þ dx2�.

Working in Coulomb gauge, we decompose ~Aðt;xÞ into
circular polarization modes obeying [7]

�
@2

@
2
þ k2 � 2k�




�
A�ð
; kÞ ¼ 0; � � � _�

2fH
; (3)

where a dot denotes differentiation with respect to t, H �
_a=a, � ffi const. We observe that one of the polarizations of
~A experiences a tachyonic instability for k=ðaHÞ & 2�.
The growth of fluctuations is described by [7,14]

Aþð
; kÞ ffi 1ffiffiffiffiffi
2k

p
�

k

2�aH

�
1=4

e���2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�k=ðaHÞ

p
(4)

in the interval ð8�Þ�1 & k=ðaHÞ & 2� of phase space
which accounts for most of the power in the produced

gauge field (we take _�> 0 without loss of generality).
This interval is nonvanishing only for � * Oð1Þ, which we
assume in the following. The production is uninteresting at
smaller �. Notice that modes with higher momenta remain
in their vacuum state (the same applies to all the modes
A�) and their effect is renormalized away [7,14].

The unstable growth of Aþð
; kÞ yields an important new
source of cosmological fluctuations, ��. The perturbations
of the inflaton are described by [7,15]

�
@2

@t2
þ 3H

@

@t
�r2

a2

�
��ðt;xÞ ¼ �

f
F�� ~F��; (5)

where the source term is constructed from (4). Notice that
metric perturbations are neglected in this calculation; it is
shown in Ref. [14] that this is a proper approximation. The
solution of (5) splits into two parts: the solution of the

homogeneous equation and the particular solution which is
due to the source. Schematically,

�� ¼ ��vac|ffl{zffl}
homogeneous

þ ��inv:decay|fflfflfflfflfflffl{zfflfflfflfflfflffl}
particular

: (6)

The quantity of interest is the primordial curvature
perturbation on uniform density hypersurfaces, � ¼
� H

_�
��. We computed the two-point h�ðxÞ�ðyÞi and

three-point h�ðxÞ�ðyÞ�ðzÞi correlation functions by using
the formalism of Refs. [7,15]. The two-point function
defines the power spectrum

h�ðxÞ�ðyÞi ¼
Z dk

k

sin½kjx� yj�
kjx� yj P� ðkÞ: (7)

We find the result (see [14] for details)

P� ðkÞ ¼ P
�
k

k0

�
ns�1

�
1þ 7:5� 10�5P

e4��

�6

�
; (8)

where P 1=2 � H2

2�j _�j , ns is the spectral index, and the pivot

scale is k0 ¼ 0:002 Mpc�1. The two terms in (8) are the
power spectra of the homogeneous and inhomogeneous
parts of (6), respectively. There is no ‘‘mixed term’’ since
the two contributions (6) are uncorrelated. [The gauge
fluctuations that source ��inv:decay, and that are amplified

according to (3), are not correlated with the vacuum in-
flaton fluctuations.] The sourced term has identical scale
dependence to the vacuum one, since the free modes ��vac

enter in the Green function of (5) [14]. The power spectrum
is probed by CMB and large scale structure observations. It
is found to be nearly scale invariant (ns ’ 1; the precise
value depends on the data set assumed [16]) and have
amplitude P� ðkÞ ffi 25� 10�10 [17] [the so-called

Cosmic Background Explorer (COBE) normalization].
When inverse decay fluctuations are subdominant, we

have the standard result P 1=2 ¼ 5� 10�5; however, at
large �, the value of P must be modified.
The three-point correlation function encodes departures

from Gaussianity. Non-Gaussian effects from inverse de-
cays are maximal when all three modes have comparable
wavelength (the equilateral configuration). The intuitive
reason is that a mode of ��inv:decay is mostly sourced by

two modes Aþ of comparable wavelength 
� 1=H [14],
and causality considerations suppress the convolution
hQ3

i¼1 ��kii / hQi

R
d3piApi

Aki�pi
iwhenever the external

momenta are too different from each other [14]. The
magnitude of the three-point function is conventionally
quantified by using the parameter fNL [16]. We find

fequilNL ffi 4:4� 1010P 3 e
6��

�9
: (9)

Schematically, fNL � h��3i=ðh��2iÞ2. The result (9) in-
cludes the full value of the two-point function, but does not
include the negligible contribution from ��vac to the three-
point function, and is accurate as long as jfNLj * 1.
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From Eqs. (8) and (9) we can see that f
equil
NL ’ 8400 at large

� [notice from (8) that P decreases exponentially with

large �]. The current WMAP bounds are �214< fequilNL <
266 (95% C.L.), while the Planck satellite, and planned

missions, will constrain f
equil
NL to Oð10Þ [18].

The results (8) and (9) depend only on the two dimen-

sionless combinations � and P 1=2, shown in Fig. 1. The
solid red curve indicates the parameter values which re-
produce the COBE normalization of the power spectrum.
In the region below, and above the dashed black line, the
power spectrum is dominated by ��vac and by ��inv:decay,

respectively. Notice that the bound on f
equil
NL implies that

��vac must dominate the power spectrum.
The results (8) and (9) have been obtained by disregard-

ing two backreaction effects of the produced gauge quanta.
Such quanta are produced at the expense of the kinetic
energy of �, so that, if the instability is sufficiently strong,
then it will affect the inflaton dynamics. The region of
parameter space where this occurs is above the black solid

line (P 1=2 > 13�3=2e���) shown in Fig. 1. We have also
disregarded the impact of the energy density of the pro-
duced quanta on the expansion rate H. This is justified
provided e2��=�3 	 2� 104M2

p=H
2. (In practice, these

two conditions amount to disregarding the produced gauge
quanta in the background equations for � and H [7,14]).

This constraint is not expressed in terms of � and P 1=2, so
we have not included it in Fig. 1. However, it can be studied
case by case.

The gauge quanta also source gravity waves (GWs). It is
customary to normalize the power of GWs to that of the
density perturbations. Proceeding analogously to the com-
putation of the density perturbations, we find [14]

r � PGW

P�

¼ 8:1� 107
H2

M2
p

�
1þ 4:3� 10�7 H

2

M2
p

e4��

�6

�

(10)

(there the denominator has been normalized to the ob-
served value). The tensor-to-scalar ratio r is an important
quantity to discriminate between different inflationary
models. The current observational limit is r & 0:2 [16],
and activity is underway to probe r * 0:01 [17].
Predictions for specific models.—We now consider the

power-law potential Vð�Þ ¼ �4�p�p, which subsumes
many interesting scenarios. Inflation proceeds at large-field
values � * Mp and ends when ��Mp. For this model,

the values of H, _�, and ns are uniquely determined by the
number of e-foldings of observable inflation Ne, according
to the standard slow-roll inflaton evolution (�; � 	 1).
In the following, we fixNe ¼ 60, which is the typical value
taken in large-field models. Once we do so, we are left with
the two parameters f=� and�. For any given value of f=�,
themass scale� is uniquely determined by fixing the power
spectrum (8) to the COBE value. We can then plot the other
observational predictions as a function of f=� only. We do
so in Fig. 2, where we take p ¼ 1; 2 for illustration. In both
cases, backreaction effects can be neglected.
Figure 2 shows that large non-Gaussianity is rather

generic for large-field axion inflation. The current bound
is violated for decay constants f=� & 10�2Mp, which is

natural in a model that admits a UV completion. Current
limits on non-Gaussianity therefore provide an upper
bound on the strongest couplings of the type�F ~F between
the inflaton and any gauge field.
Natural inflation.—The original natural inflation model

[1] was based on the potential (1). If we require ns * 0:95,
as suggested by recent data [16], then the model requires a
large decay constant f * 5Mp [19]. Hence inverse decay is

negligible unless � * 200. On the other hand, f * Mp

may be problematic, and it seems that a UV completion of
axion inflation requires f <Mp. We now turn our attention

to such scenarios.
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FIG. 1 (color online). Values of parameters leading to the
observed COBE normalization of the power spectrum (red
line) and reference values for the non-Gaussianity parameter

f
equil
NL ¼ 10; 266; 8000 along this curve. See the main text for

details.
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FIG. 2 (color online). Observational predictions for the large-
field power-law inflation model V / �p, with p ¼ 1; 2 and
assuming Ne ffi 60. The spectral index is ns ¼ 0:975; 0:967 for
p ¼ 1; 2. At small f=� the coupling of � to F ~F is stronger and
non-Gaussianity is large. The tensor-to-scalar ratio decreases at
strong coupling; however, the decrease is important only at

values of f=� ruled out by the current bound on f
equil
NL .
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Axion monodromy.—In Ref. [5] an explicit, controlled
realization of axion inflation was obtained from string
theory. The potential has the form Vð�Þ ¼ �3�þ
�4 cosð�=fÞ where the linear contribution arises because
the shift symmetry is broken by wrapping anNS5-brane on
an appropriate 2-cycle, and the periodic modulation is
due to nonperturbative effects. The former typically domi-
nates [5,6], so we have the potential V / �, to first
approximation. The decay constant is bounded [5] as

0:06V�1=2g1=4s < f=Mp < 0:9gs with gs < 1 the string

coupling andV 
 1 the compactification volume in string
units. From Fig. 2, we see that large non-Gaussianity is
easily obtained for� ¼ Oð1Þ. Periodic modulation ofVð�Þ
can also lead to resonant non-Gaussianity [20] for
f & 10�2Mp and � sufficiently large [6,21].

Multiaxion inflation.—Reference [2] proposed a model
characterized by two axions � and �, with potential V /
cosð�fi þ

�
gi
Þ which arises from the coupling of the two

axions to two different gauge groups: �
fi
Fi

~Fi and
�
gi
Fi

~Fi

(up to numerical coefficients). For f1=g1 ¼ f2=g2, one
linear combination of the two axions becomes a flat direc-
tion of V. This relation can be ascribed to a symmetry of
the theory, and the curvature of the potential along this
direction can be made controllably small if this symmetry
is only slightly broken. In this case, one obtains an effec-
tive large-field inflaton, with a potential of the type (1), and
with an effective axion constant>Mp, even if all the fi and

gi are sub-Planckian. In Ref. [3], it was then noted that the
collective motion ofN axions�i, each with its own broken
shift symmetry, can support inflation when fi < Mp, via

the assisted inflation mechanism [22]. This scenario is
quite natural in string theory, where generic compactifica-
tions may contain exponentially large numbers of axions
[3,4]. For �i & fi we can expand the potential near the
minimum to obtain V ffi P

im
2
i �

2
i =2. The dynamics of

the collective field � �
ffiffiffiffiffiffiffiffiffiffiffiffiP

i�
2
i

q
are well-described by

the single field potential V / �2 [3,4]. Sufficient inflation
requires �>Mp; sub-Planckian �i (and fi) are possible

for sufficiently large
ffiffiffiffi
N

p
. The coupling to gauge fields is

discussed in Ref. [23]
Axion mixing.—Reference [8] realizes p ¼ 2 via

axion–4-form mixing. Here f <Mp, so fequilNL 
 1 is

possible.
In summary, we have shown that large non-Gaussianity

is possible for many explicit axion inflation models which
admit a UV completion. Our qualitative results will carry
over to any inflation model with a PNGB dynamically
important during inflation, including multifield models,
such as Refs. [24,25]. It would be interesting to study the
value of � in concrete string theory realizations.
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