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In this Letter we propose a fully scalable randomized benchmarking protocol for quantum information

processors. We prove that the protocol provides an efficient and reliable estimate of the average error-rate

for a set operations (gates) under a very general noise model that allows for both time and gate-dependent

errors. In particular we obtain a sequence of fitting models for the observable fidelity decay as a function

of a (convergent) perturbative expansion of the gate errors about the mean error. We illustrate the protocol

through numerical examples.
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The challenge of characterizing the level of coherent
control over a quantum system is a central problem in
contemporary experimental physics and a fundamental
task in the design of quantum information processing
devices. Full characterization of any quantum process is
possible though quantum process tomography (QPT) [1]
which has been successfully applied to the measurement of
up to three coupled qubits (two-level systems) in NMR
[2,3], linear optics [4], atomic ions [5] and superconduct-
ing qubits [6,7]. However, QPT suffers from two
shortcomings: the first is the often unrealistic assumption
that measurements and state preparations admit much
lower errors than the process which is being characterized;
the second is that the number of experiments required
grows exponentially with the number of qubits, and hence
QPT becomes impractical for even moderately large
systems.

Recently there has been significant interest in scalable
methods for partial characterization of the noise affecting a
quantum process [8–12], and, in particular, randomized
benchmarking (RB) protocols [8,13]. For example, the
RB protocol proposed in Ref. [13] is conjectured to pro-
vide an experimental means for estimating the average
error rate for single-qubit Clifford gates. The simplicity
of this protocol has motivated experimental implementa-
tions in atomic ions [13,14], NMR [15], superconducting
qubits [6,16], and atoms in optical lattices [17].

However the above RB protocols leave open the ques-
tion of how to implement a scalable multiqubit protocol in
an unambigious manner. Another open issue is to deter-
mine sufficient conditions under which a RB protocol gives
a reliable estimate; it is easy to construct examples where
the decay rate estimated via RB protocols is not reliable.
An unrealistic but simple example is when the error is gate-
dependent and equal to the exact inverse of the target gate.
In this example, implementing any gate results in the
identity operation and so the error rate given by the proto-
col is always equal to zero, whereas in actuality there is
substantial error on each gate.

In this Letter we propose a scalable randomized bench-
marking protocol for Clifford gates on n-qubit quantum
processors, requiring at most Oðn2Þ quantum gates, Oðn4Þ
cost in classical preprocessing (to select each gate-
sequence), and a number of single-shot repetitions that is
independent of n. We give a rigorous analysis of the form
of the observed fidelity decay for arbitrary time- and gate-
dependent errors by developing a perturbative expansion of
the errors about the average error. We prove that for time-
independent and gate-independent errors the fidelity decay
is exponential at a rate that determines the average error-
rate of the noise model. By deriving conditions for when
our perturbative expansion is convergent we are also able
to prove that the protocol gives a reliable estimate of the
average error-rate if the gate-dependent component of the
error is sufficiently weak. In particular, we derive a fitting
model for the observed fidelity decay which includes first-
order correction terms due to gate dependence in the errors.
This formula shows that weak gate dependence in the
errors can lead to a deviation from the exponential decay,
defining a partial test for such effects in the noise.
Moreover, the model accounts for state preparation and
measurement errors as they show up as independent fit
parameters in the formula.
Our motivation for restricting to the Clifford group, as

opposed to the full unitary group, is that our protocol is
provably scalable in this case. In contrast, benchmarking
the full unitary group is not a scalable task since generating
a uniformly random unitary is an inefficient task. In spite of
this limitation our method still provides significant infor-
mation regarding the reliability of a quantum information
processor for several independent reasons. First, the
Clifford group is generated by a two-qubit entangling
gate (such as the C-NOT) coupled with a set of single-qubit
gates (such as the Hadamard and �

4 gates), and the unitary

group can be generated by adding just one additional
single-qubit gate not in the Clifford group (such as the �

8

gate). For many implementations the error-rate for a par-
ticular single-qubit rotation would not be expected to differ
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significantly from single-qubit rotations in the Clifford set.
Furthermore, quantum computation is possible using only
Clifford gates combined with ancilla states and measure-
ments [18]. Lastly, most fault-tolerant schemes are based
on stabilizer codes [19], which implies fault-tolerant quan-
tum computation will likely be dominated by Clifford
gates. Hence, scalably benchmarking Clifford gates is
important for error estimation in universal quantum
computation.

Our RB protocol consists of the following steps
(repeated for several values of m):

Step 1—Generate a sequence of mþ 1 quantum opera-
tions with the first m chosen uniformly at random from the
Clifford group and the final operation chosen so that the net
sequence (if error-free) is the identity operation. Since the
Cliffords form a group, this mþ 1th correction gate will
also be a Clifford element. In practice each operation Cij
will have some associated error and the entire sequence can
be modeled by Sim ¼ �mþ1

j¼1 ð�ij;j � CijÞ, where im is the

m-tuple (i1; . . . ; im) and imþ1 is uniquely determined by im.
In the above, �ij;j is a quantum operation representing the

error associated with the operation Cij , and is allowed to

depend independently on the time-step j. This is a very
general noise model—the only assumption is that correla-
tions in the noise are negligible on time scales longer than
the time of the operation Cij (so that �ij;j does not depend

on earlier operations). This assumption becomes very well-
motivated as n increases (see below).

Step 2—For each sequence measure the survival proba-
bility Tr½EcSimð�c Þ�. Here �c is the initial state taking

into account preparation errors and Ec is the POVM

element that takes into account measurement errors. In
the ideal noise-free case �c ¼ Ec ¼ jc ihc j.

Step 3—Average over random realizations of the sequ-
ence to find the averaged sequence fidelity,

Fseqðm; c Þ ¼ Tr½EcSmð�c Þ�; (1)

where Sm is the average sequence operation

S m ¼ 1

jfimgj
Xjfimgj
im

Sim : (2)

Step 4—Fit the results for the averaged sequence fide-
lity (1) to the model

Fð1Þ
seqðm;c Þ¼A1p

mþB1þC1ðm�1Þðq�p2Þpm�2 (3)

derived later. A1, B1, and C1 absorb state preparation and
measurement errors as well as the error on the final gate.
The average error rate r, defined below, is obtained from
the relation r ¼ 1� p� ð1� pÞ=d. For gate-independent
errors the fitting results simplify to

Fð0Þ
seqðm; c Þ ¼ A0p

m þ B0; (4)

where A0 andB0 absorb state preparation and measurement
errors as well as the error on the final gate. Hence a nonzero

fit value for q-p2 is an indication of weak gate dependence
in the errors.
The parameters r and p determined by the above proto-

col are defined as follows. Define� to be the average error
for the set of error operators f�ij;jg,

� � 1

jfðij; jÞgj
Xjfðij;jÞgj

ij;j

�ij;j: (5)

The standard experimental figure of merit for a
noise model � is the average gate fidelity Fave ¼R
dc hc j�ðjc ihc jÞjc i, which is the survival probabi-

lity averaged over all pure input states. This naturally
defines the average error rate as r � 1� Fave. Note that
Fave is equivalent to the average process fidelity and en-
tanglement fidelity, up to normalization factors [18]. To
define p, a key result in our analysis is that the Clifford
group is a unitary 2 design. Therefore ‘‘twirling’’ � over

the Clifford group gives 1
K

P
lC

y
l �� � Cl ¼ �dep, where

�depð�Þ¼p�þð1�pÞ1d is the unique depolarizing chan-

nel with the same average fidelity as� [20]. Hence, Fave ¼
pþ ð1� pÞ=d, which relates the fidelity decay parameter
p to the average error rate r as given above.
Derivation.—In the idealized case of gate and time

independent errors we have �ij;j ¼ � for each ij; j.

Repeated application of the identity operation Cij � Cyij in
Sim gives Sim ¼ � � �m

j¼1ðDy
ij
�� �DijÞwhere we have

used Cimþ1
� � � � � Ci1 ¼ 1 and for each j defined a new

gate Dij ¼ Cij � � � � � Ci1 that is independent from the

gates which where performed at time-steps earlier than j
(Cij�1

, etc.). Substituting this into Eqs. (1) and (2) the

average sequence fidelity is Fð0Þ
seqðm; c Þ ¼ Tr½Ec� �

��m
twirlð�c Þ�, where �twirl ¼

P
ij
~�ij=K with ~�ij ¼ Dy

ij
�

� �Dij . Thus we are left with an m-fold composition of

gate-independent twirls over the Clifford group, and

Fð0Þ
seqðm; c Þ reduces to Eq. (4) with A0 ¼ Tr½Ec�ð�c �

1=dÞ� and B0 ¼ Tr½Ec�ð1=dÞ�.
More realistically, the noise operator can be both gate

and time dependent � ! �ij;j. We can predict the behav-

ior of Fseqðm; c Þ by considering a perturbative expansion

of each �ij;j about the mean error �. Defining ��ij;j ¼
�ij;j �� for each ij, our perturbative approach will be

valid provided each ��ij;j is small in a sense made precise

later. Using the same change of variables described above,

i.e., Dim ¼ �m
j¼1Cij , we find that Sim ¼ Sð0Þ

im
þ Sð1Þ

im
þ

Sð2Þ
im

. . . where Sð0Þ
im

corresponds to the gate-independent

case, Sð1Þ
im

is the first-order correction and so on. The first-

order correction consists of three terms defined by whether
the small gate-dependent perturbation acts (1a) on the first
gate, (1b) somewhere in the middle (there are m� 1 of
these terms), or (1c) on the final gate. Explicitly,
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Sð1aÞ
im

¼ � � ~�im � . . . � ~�i2 � ðDy
i1
� ��i1;1 �Di1Þ

Sð1bÞ
im

¼ � � ~�im � . . . � ðDy
ij
� ��ij;j �DijÞ � . . . � ~�i1

Sð1cÞ
im

¼ ��imþ1;mþ1 � ~�im � . . . � ~�i1 :

Averaging Sð1aÞ
im

over im gives

S ð1aÞ
m ¼ � ���m�1

dep � ðQ1 ��depÞ; (6)

where we define for each j,Qj ¼
P

ij
Dy

ij
��ij;j �Dij=K.

Note the correlations between the noise and the gate op-
erations prevent this from being a depolarizing channel.

For the m� 1 terms with j 2 f2; . . . ; mg (case b) aver-
aging over im gives

S ð1bÞ
m ¼ Xm

j¼2

� � ððQj ��Þdep ���2
depÞ ���m�2

dep ; (7)

where ‘‘dep’’ represents the depolarization of the
operator within brackets. The main trick used here
is to reexpand Dij ¼ Cij �Dij�1

in order to depolarize

Cyij � ��ij;j � Cij �� under the twirling operationP
ij�1

Dy
ij�1

� � �Dij�1
=K.

To find the expression for Sð1cÞ
m we use the fact that the

Cliffords are a group. If i1; . . . ; im�1 are fixed, averaging
over the im index runs through every Clifford element
with equal frequency in the Dim random variable.

Since �imþ1;mþ1 is the error associated with the gate

Dy
im
,
P

im
��imþ1;mþ1 � ðDy

im
�� �DimÞ=K is independent

of the i1; . . . ; im�1 indices and

S ð1cÞ
m ¼ ðRmþ1 �� ��depÞ ���m�1

dep ; (8)

where Rmþ1 ¼ P
im
�i0m;mþ1 � ðCyim �� � CimÞ=K. Here

�i0m;mþ1 denotes the error that arises when the Clifford

operation Cyim is applied at final time step mþ 1.

Combining these three terms it can be shown that the
average sequence fidelity is given by Eq. (3) with

A1 ¼ Tr

�
Ec�

�Q1ð�c Þ
p

� �c þ ðp� 1Þ1
pd

��

þ Tr

�
EcRmþ1

�
�c

p
� 1

pd

��
; (9)

B1 ¼ Tr

�
EcRmþ1

�
1
d

��
; C1 ¼ Tr

�
Ec�

�
�c � 1

d

��
;

(10)

where q ¼ P
m
j¼2 qj=ðm� 1Þ and qj is the depolari-

zing parameter defined by ðQj ��Þdepð�Þ ¼ qj�þ
ð1� qjÞ1=d. Note that A1, B1, and q can have a

dependence on m if the errors are time dependent.
An important issue is determining when the zeroth or

first-order expressions Eqs. (3) and (4), are valid

approximations, and, more generally, when our perturba-
tive expansion is convergent. To bound the error in fidelity
at a given order we use the ‘‘1 ! 1’’ norm on linear
superoperators maximized over Hermitian inputs [21], de-
noted k � kH1!1. We find that for each order k,

kSðkÞm kH1!1 �
X

jk>...>j1

�jk . . .�j1 ; (11)

where �j :¼
P

ik�ij ��kH1!1=K is a measure of the varia-

tion in noise at the jth time step. In the case where the noise
is time independent Eq. (11) becomes

kSðkÞm kH1!1 � mþ 1
k

� �
�k;

and, hence,

jFðkþ1Þ � FðkÞj � kSðkÞm kH1!1 � mþ 1
k

� �
�k:

Note that our choice of norm is motivated by the fact that it
gives a tighter bound on the error in fidelity. Hence the
kþ 1 order correction to the fidelity formula can be ne-
glected provided that

ðmþ 1� kÞ�=ð1þ kÞ � 1:

Thus, we can ignore second order terms when the variation
in error strengths satisfies � � 2=m. Note that in practice
one also needs m 	 1 to have enough data points for a
reasonable estimate of p in the fitting model. This issue is
discussed further in Ref. [22].
At this point we emphasize our results hold for any

number of qubits; however, there are two subtle remarks
in the multiqubit case. First, our protocol provides an
estimate of the average error rate associated with a
Clifford operation, which for n qubits, consists of Oðn2Þ
generating gates. Hence our condition for weak variation in
the errors corresponds to the error set associated with
blocks of Oðn2Þ gates. Second, we assume that non-
Markovian noise effects are limited to time scales less
than that of a typical Clifford operation. For large n this
corresponds to time scales less than Oðn2Þ�, where � is the
time scale of a generating gate.
We now numerically illustrate the protocol by consider-

ing some physically motivated single-qubit noise models
and provide an example of when the first-order correction
term may be observed experimentally. First we consider
time-independent unitary errors corresponding to over-
under rotations. The unitary error was constructed by first
finding the Hamiltonian for each Cj via Cjð�Þ ¼
expð�iHjÞ� expðiHjÞ. Next, expð�iHjÞ was diagonalized
and to simulate the error one of the eigenvalues was multi-
plied by ei� and the other by e�i�. Two cases for � were
analyzed: � ¼ 0:1 (case A) and � chosen uniformly at
random in [0.075, 1.125] (case B). Numerical values for
Fseqðm; c Þ are shown in Fig. 1 as blue points. The main

point is that for both cases the first-order formula (green
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line) models the data extremely well, whereas the zeroth-
order formula (red dashed) only models the sequence
fidelity in case A (when there is no variation in �).

We also considered two other error models of practical
relevance: unitary error with depolarizing noise and uni-
tary error with amplitude damping. The depolarizing and
damping parameters were chosen uniformly at random in
0:9875
 0:01 with the unitary error chosen as in case A.
The results are summarized in Table I—in both cases the
simulations are well approximated by the zeroth-order
solution. These results further illustrate that the zeroth-
order model gives a robust estimate of the error-rate for a
variety of error models with small enough noise variation.

Lastly, we prove the efficiency of the protocol for arbi-
trary numbers of qubits. There are three main points to
analyze: Uniform sampling.—Each Clifford element is
uniquely determined by its action on the 2n-generating
elements of the Pauli group. Since randomly choosing 2n
elements of the Pauli group that satisfy the required com-
mutation relations is equivalent to inductively choosing
random solutions to 2n sets of linear equations [which
requires Oðn3Þ operations], we can produce a random
Clifford element in Oðn4Þ (classical) operations.
Implementing Clifford operations.—Any Clifford element
can be decomposed into a sequence of Oðn2Þ generators in
Oðn3Þ time [alternatively, there are slower methods for
such a decomposition into Oðn2= lognÞ generators [23]].
Averaging.—The number of sequences of length m scales

as 2mOðn2Þ and Hoeffding’s inequality states that, with con-
fidence � and accuracy �, the number of trials k needed for
approximating the average sequence fidelity is no larger
then k ¼ lnð2=�Þ=2�2, which is independent of m and n.

In conclusion, we describe a scalable protocol for esti-
mating average error-rates in noisy quantum information
processors that consists of applying random sequences of
Clifford gates and measuring the average sequence fidelity.
The analysis admits both gate and time-dependent errors

and is robust against state preparation and measurement
errors. We derive zeroth and first-order fitting models for
the experimental data and prove the validity of the models
provided the variation in the errors is not too strong. We
illustrate our results for some physically relevant noise
models and provide an example of when a zeroth-order
model fails to model the data.
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FIG. 1 (color online). Average sequence fidelity as a function
of sequence length for unitary noise (see text for details). In these
examples B1 ¼ B0 ¼ 1=2 since the noise model is unital and we
assumed no state preparation or measurement errors. Hence, we
have subtracted off these DC offsets so that pure exponentials
will appear as straight lines (semilog plot). The nonexponential
behavior for case B is evident.

TABLE I. Numerical results for the parameter p, error rate r,
and our gate-dependence measure q-p2 for the four cases of
noise models considered. See text for details.

Unitary A Unitary B

Unitary

and Dep.

Unitary

and T1

p 0.980 0.943 0.982 0.988

r 1:05e-2 2:85e-2 8:75e-3 5:85e-3
q-p2 �2:73e-4 �6:83e-3 �2:77e-8 �2:80e-8
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